By hand calculation of percent agreement, Scott's pi, Cohen's kappa and Krippendorff's alpha for a nominal level variable with 2 values

 

This variable is "What medium is analyzed? Radio" from Lombard, Snyder-Duch and Bracken (2002).

The contingency matrix is copied from Simstat output but could be obtained from other software as well.

 

 

INTER-RATERS: V5_4 by V5_4J

 

  V5_4J->

             Count |         |         |

           Row Pct |         |         |

                   |       0 |       1 |   Total

V5_4      —————————+—————————+—————————+————————

                 0 |     127 |       1 |     128

                   |    99.2 |     0.8 |    99.2

                   +—————————+—————————+

                 1 |         |       1 |       1

                   |     0.0 |   100.0 |     0.8

          —————————+—————————+—————————+

            Column       127         2       129

             Total      98.4       1.6     100.0

 

_______________________________________________________________________________

 

 

Percent agreement:

 

PA0 = Total A’s    =    127+1   =    128  =  .99224 = .99

               n                      129           129

 

 

_______________________________________________________________________________

 

 

Scott's pi:

 

Scott’s pi = PA0 - PAE         where PAE = εpi2    and    pi = each joint marginal proportion

                    _________

                         1 - PAE

 

 

WITH ROUNDING:

  

                  ----------------Marginals------------

Category   n for coder A      n for coder B         Product of marginals:       Sum of marginals          Joint marginal proportions

       1                 128                  127                            16256                              255                          255/258   =   .99

       2                     1                      2                                      2                                  3                              3/258    =    .01

                          129                  129                                                                     258                                                1.00 

 

 

So PAE = εpi2

= (.99)2 + (.01)2

=  .98 + .0001

= .98

 

And, Scott’s pi =

= .99 - .98

     1 - .98

 

= .01

   .02

 

= .5

 

 

WITHOUT ROUNDING:

 

                   ----------------Marginals------------

Category   n for coder A      n for coder B         Product of marginals:       Sum of marginals          Joint marginal proportions

       1                 128                  127                            16256                              255                          255/258   =   .98837

       2                     1                      2                                      2                                   3                              3/258    =   .011627

                          129                  129                                                                      258                                                 .99999 

 

So PAE = εpi2

= (.98837)2 + (.011627)2

=  .97687 + .00013520

= .977

 And, Scott’s pi =

= .99224 - .977

        1 - .977

 

= .01524

   .023

 

= .6626087  = .663

 

 

_______________________________________________________________________

 

 

Cohen's kapp:

 

Cohen’s kappa =   PA0 - PAE       where PAE = (1/n2)(εpmi)   and    n = number of units coded in common by coders

                                 ________                                                      and    pmi = each product of marginals

                                    1 - PAE  

 

 

WITH ROUNDING:

 

So:   PAE = (1/n2)(εpmi)

                = (1/1292)(16256 + 2)

                = (1/16641)(16258)

                = (.00006)(16258)

                = .98

 

And, Cohen’s kappa = PA0 - PAE 

                                           1 - PAE

 

= .99 - .98

     1-.98

 

= .01

   .02

 

= .5

 

 

WITHOUT ROUNDING:

 

So:   PAE = (1/n2)(εpmi)

                = (1/1292)(16256 + 2)

                = (1/16641)(16258)

                = (.000060092)(16258)

                = .97698

 

And, Cohen’s kappa = PA0 - PAE 

                                          1 - PAE

 

= .99224 - .97698

     1 -.97698

 

= .01526

   .02302

 

= .6629  = .663

 

 

_______________________________________________________________________

 

 

Krippendorff’s Alpha:

 

Contingency matrices (the first is copied from Simstat output):

 

INTER-RATERS: V5_4 by V5_4J

 

  V5_4J->

             Count |         |         |

           Row Pct |         |         |

                   |       0 |       1 |   Total

V5_4      —————————+—————————+—————————+————————

                 0 |     127 |       1 |     128

                   |    99.2 |     0.8 |    99.2

                   +—————————+—————————+

                 1 |         |       1 |       1

                   |     0.0 |   100.0 |     0.8

          —————————+—————————+—————————+

            Column       127         2       129

             Total      98.4       1.6     100.0

 

  V5_4->

             Count |         |         |

                   |         |         |

                   |       0 |       1 |   Total

V5_4J     —————————+—————————+—————————+————————

                 0 |     127 |       0 |     127

                   |         |         |   

                   +—————————+—————————+

                 1 |       1 |       1 |       2

                   |         |         |   

          —————————+—————————+—————————+

            Column       128         1       129

             Total

 

Coincidence matrix:

 

       

             Count |         |         |

                   |         |         |

                   |       0 |       1 |   Total

          —————————+—————————+—————————+————————

                 0 |     254 |       1 |    255

                   |         |         |   

                   +—————————+—————————+

                 1 |       1 |       2 |     3

                   |         |         |   

          —————————+—————————+—————————+

            Column        255       3       258

             Total

 

 

Do = 1 – 1/n (∑ Occ)

 

      = 1 – 1/258 (254 + 2)

 

      = 1 - .0038759 (256)

 

      = 1 - .992248

 

      = .007752

 

 

De = 1 – 1/ (n(n-1)) (∑ nc(nc-1))

 

     = 1 – 1/ 258(258-1) ( 255(255-1) + 3(3-1) )

 

     = 1 – 1/ 258(257) ( 255(254) + 3(2) )

 

     = 1 – 1/ 66306 (64770 + 6)

 

     = 1 – .000015081 (64776)

 

     = 1 - .9769251

 

     = .0230749

 

α   = 1 – (Do / De)

 

     = 1 – (.007752/ .0230749)

 

     = 1 - .3359494

 

     = .6640506

 

     = .664