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Abstract 
Nonverbal behavior is a very important part of 

human interactions; and how this behavior is tracked and 

rendered is also key to establishing social presence.  

Tracking nonverbal behavior is useful not only for 

rendering signals via avatar, but also for providing clues 

about interactants. In this paper we describe a novel 

method of determining identity (i.e., gender) using 

machine learning with input taken from the Microsoft 

Kinect. Twelve men and twelve women performed a 

number of gestures in front of the Kinect. A logistic 

regression used ten posture and gesture features (e.g., 

angle between shoulders and neck) to predict gender. 

When presented with a person it has never seen before, 

the model was 83% percent accurate in predicting 

whether the person was a man or a woman, even from 

very short (i.e., ten seconds) exposures to the test 

participants. We discuss the usefulness of the current 

research tool for presence, as well as point out practical 

applications. 
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1. Tracking gesture to detect gender 

Some elements of nonverbal behavior that have been 

studied in virtual environments include eye gaze (Garau et 

al., 2003; Bailenson, Blascovich, Beall, & Loomis, 2001), 

posture (Vinayagamoorthy, Steed & Slater, 2008), touch 

(IJsselsteijn, 2006), and purposefully communicative 

gestures such as waving or clapping (Kane, McCall & 

Collins, 2012).  Any technology that can potentially port 

nonverbal information unobtrusively may be used to 

a  ment social presence   “The ill sion [o  presence] will 

be more complete if the medium is perceptually and 

psychologically immersive....and if we encounter people 

or entities within such a medium, even if there is no 

possibility of true social interaction with them, we are 

enco ra ed to respond to social c es they pro ide” 

( om ard et al , 2000)   As Biocca (1997) states “The 

body transmits information to other bodies through a kind 

o  a  ecti e conta ion ”   ow that in ormation is mediated 

is key to the experience of social presence. 

Efforts to incorporate nonverbal behavior into virtual 

interactions must take into account both technical 

questions and awareness of how gesture informs 

interactions in real life. Newer video games, for example 

the Microsoft Kinect and Nintendo Wii, allow for high 

immersive tracking that captures subtle body movements 

and gestures of the players. In the current paper we 

discuss and examine how these high immersion tracking 

games, in particular the Microsoft Kinect which uses 

active computer vision to automatically track body 

movement, can increase the information available to 

inform a sense of presence by automatically detecting 

behavior.  In addition, the ability of these devices to be 

linked over the internet allows co-presence to occur 

cheaply and easily in the home environment.   

In reviewing the relevant literature, we first discuss 

previous work that examines the relationship of nonverbal 

behavior to social presence. Next we choose a test case—

gender—and examine classic methods from psychology 

and communication that detect gender using behaviors 

such as gesture and gait. Finally, we will briefly explain 

the principles of computer vision and machine learning as 

the tools we use to examine how the digital footprint, 

collected via the Kinect, can reveal cues about gender. 

1.1. Examining and automatically detecting 

nonverbal behavior 

The theoretical framework developed by Walther 

(1996) provides a way to understand the implications of 

online interactions in which there are fewer social cues 

available than there are face to face. Absence of most 

conventional kinds of nonverbal communication has been 

notable in online interactions, although substitutions, such 

as emoticons for facial expressions, have evolved.  

Despite very limited channels for nonverbal interactions, 

Yee and colleagues (2007) showed that nonverbal social 

norms via interpersonal distance carried over to online 
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virtual environments. Now, video game interfaces such as 

the Kinect, which allow more complex gestural 

information to be communicated through networked 

computers from one physically distant participant to 

another, hold the promise of adding more cues that 

resemble true nonverbal behavior.  In essence, the Kinect 

may provide enough behavioral cues to allow a rich 

nonverbal and verbal social interaction via avatars, but 

still maintain the  ene its o  Walther’s hyperpersonal 

nature of computer-mediated communication due to the 

a ility to tailor one’s representations  

1.2. Using Kinect and Other Automated Systems 

to Detect Human Gestures 

A number of studies have used automated systems to 

analyze body language or gesture. Some interesting recent 

studies have focused on states of mind. Michael, 

Dilsizian, Metaxas, and Burgoon (2010), tracked hand and 

head movements relative to the body, head position in 

three-dimensional space, and facial expressions to detect 

deception without requiring sensors to be placed on the 

participant. In another study, a virtual reality-based 

system using head-mounted displays tracked the head and 

eye movements of 20 children to compare the attention 

performance of children with attention deficit 

hyperactivity disorder (ADHD) to a control group of 

children (Parsons, Bowerly, Buckwalter, & Rizzo, 2007). 

The children previously given a diagnosis of ADHD 

“displayed more o erall hyperacti ity as meas red  y  i e 

o t o  si  meas res o  total  ody mo ement” (p  336)   

Thus, we see that important information that could 

increase interpersonal communication and thus presence 

can be picked up through automated systems.  

The Microsoft Kinect is an extremely popular video 

game interface (Gamesbeat, 2011) that uses an infrared 

emitter and sensor to capture body movements by 

isolating the X,Y, and Z coordinates of 20 nodes roughly 

representing joints in the the body. Since this technology 

has become available, several studies have already used it 

as a tool to detect, interpret or represent human motion. 

Most significant to this paper, as part of an effort to 

de elop a less e pensi e alternati e to a “smart home”  or 

monitoring vulnerable inhabitants, a system using Kinect 

was designed to identify common daily activities such as 

opening pill bottles and drinking a glass of water (Sung, 

Ponce, Selman, & Saxena, 2011). Although the system 

was better at recognizing activities when it had been 

trained on a previous recording of a specific participant, it 

was also able to generalize from that training and 

recognize activities done by a new participant unknown to 

the system. One of the most important qualities of this 

kind of data, along with data obtained from online 

interactions, is the unobtrusive nature of the data 

gathering. The user wears no markers, no special clothing, 

and does not even need to be aware the cameras are in the 

room. 

1.3. The Kinect and Computer Vision 

The Kinect provides a unique opportunity to study 

gestures while minimizing the effect of being hampered 

by reminders of observation. Previous successful video 

game interfaces have sought to involve naturalistic body 

movement without using computer vision, for example by 

using a base with sensors (Dance Dance Revolution, 

Konami Corporation) or a handheld wand (the Nintendo 

Wii).  For some time, the ability to track body movements 

in 3D space has been in use by high end virtual reality 

research labs and the military, and in entertainment 

contexts such as computer graphics in film (see 

Blascovich & Bailenson, chapter 3, for a review). 

However, as previously utilized, 3D tracking required the 

users to enter sterile lab setups and wear markers on his or 

her bodies, an expensive and invasive technology, without 

much application in daily life. This is now changing, as 

the Kinect is an inexpensive, portable and unobtrusive 

device about 12 x 6 x 5 inches in size and weighing 

slightly more than 3 pounds. Its size allows it to sit on a 

desk or be mounted on a wall. Each camera can capture 

movement of up to four people at once, from a range of 4 

to 12 feet, even in low light conditions. Also significantly, 

the X o  console can  e networked so that players’ 

avatars can interact online. The gross movements that are 

detectable by Kinect are noninvasive and, unlike other 

face tracking methods, can still be useful from a distance 

and at low resolution of recording. By assessing a basic 

characteristic like gender, we can examine the ability of 

Kinect to assist a theoretically driven research question 

about gender cues as well as advance practical 

applications. While Kinect is an extremely popular video 

game interface, it is also a powerful new kind of medium 

which tracks and can aid in rendering human nonverbal 

communication. 



 

Once the semantic features of visual data have been 

captured through computer vision, the data must be 

interpreted to provide meaningful information. This is 

done through the use of algorithms that interpret the input 

to pull out the desired information. In the case of the 

Microsoft Kinect, a skeleton (Figure 1) with 20 nodes 

roughly representing joints is extrapolated from the data, 

and the movements of the nodes are then tracked in three 

dimensions, providing the position and movement of the 

body parts of the person being tracked.  

 

1.4. Gender Identification Through Movement 

and Gesture 

Although gender is linked to sexual characteristics 

that are rooted in biology, it is also an important social 

construct that influences many avenues of interpersonal 

communication (Birdwhistell, 1970). There are an 

enormous number of cues available to human observers in 

real life to answer the important question of whether 

another human is to be considered male or female, 

including facial recognition, voice tone, speech patterns, 

and gesture.  Of these cues, gesture is considered to be 

e tremely salient, as stated  y Yan  (2010) “[These] 

gender-specific gestures are so clearly distinguished that 

the people of the same cultural group who observe them 

with their eyes and without access to linguistic utterances 

can quickly tell, with the least difficulty or doubt, that 

they are typical o  males or  emales” (p  366)   

However, beyond these culturally specific 

differences, there are differences in gesture and posture 

which can make it possible to distinguish men from 

women cross-culturally (Yu, Tan, Huang, Jia & Wu, 

2009). These motions can be broken down into basic 

elements, as became apparent through various 

experiments using point light displays, starting in the 

1970’s ( ohansson, 1973)  These displays pro ide 

extremely limited visual information, consisting only of 

light disks (affixed to the joints of real or simulated 

walkers) moving against a dark background, showing 

gross movements in a single plane. Despite the minimal 

nature of this information, human observers looking 

through this dark background (i.e., they can only see the 

lights shining through, not the human behind the 

background) have been able to identify actions, gender 

(Cutting, Proffitt, & Kozlowski, 1978), emotions 

(Atkinson, Dittrich, Gemmell & Young, 2004), and even 

states of mind (Michalak, Troje, & Heidenreich, 2011) 

based only on these displays. The data generated by 

Kinect is similar to these point light displays in that they 

consist of coordinates that indicate joint position; 

however, a) the Kinect also provides accurate information 

on the Z axis and b) the Kinect does not require that the 

user wear an obtrusive setup with lights on it which likely 

interferes with normal behavior. 

1.5. Machine learning 

To investigate how well gender can be recognized 

from Kinect data, machine learning was used. In a book 

Figure 1. An illustration of Kinect data output in the form 

of a wireframe. The wireframe consists of 15 nodes with 

and x, y, and z value in physical space. Angle α describes 

an example of the angles that we extracted as features. 

Distance l describes an example distance between two 

nodes that we extracted as features. 



 

chapter written for communication scholars, Ahn and 

colleagues (2010) summarized the machine learning 

procedures and reviewed previous research in 

communication that has successfully implemented the 

technique. During machine learning, a computer takes raw 

data and utilizes a train-and-test paradigm to uncover 

patterns or relationships in the data (for a recent example 

using machine learning and nonverbal behavior, see 

Michael, Dilsizian, Metaxas, & Burgoon, 2010). As such, 

machine learning is the process of training machines to 

predict values or classes based on input data (see Witten 

& Frank, 2011, and Bishop, 2006, for detailed manuals). 

The power of machine learning is rooted in the fact that it 

can quickly process a great volume of data and learn 

complex interrelationships that are captured in the data. 

As this is a bottom-up approach, machine learning 

algorithms can come up with relationships between 

variables that have not been identified before. 

A popular statistical technique which can be 

described as a form of machine learning algorithm is 

linear regression. With linear regression, input predictors 

which have a continuous value are combined linearly to 

predict a continuous outcome value. For instance, the size 

of a house can be used to predict the price of that house. 

Consider a set of house prices and sizes for one hundred 

houses. When feeding this data to a linear regression 

algorithm to fit the regression line, the resulting regression 

line might look something like Figure 2.  Subsequently, 

for a new house from which only the size is known, the 

ho se’s price can  e predicted  y  sin  the si e as inp t to 

the linear regression.  There might also be cases in which 

one does not want to predict continuous values but only 

discrete classes or values. For instance, for the case of 

house prices, we might only know if a house is cheap or 

expensive. Linear regression is not well suited for this 

problem as it might make prediction errors when the input 

values for two different discrete classes are close together 

(see Figure 3 for an example). Instead, another algorithm, 

called logistic regression, can be used to create a predictor 

that is able to separate two different classes. An example 

logistic regression line is presented in Figure 3. From 

Figure 3, it can be seen that all the data points for houses 

have only one of two possible values on the house price 

axis. The logistic regression line works like a threshold 

model. Based on the example data points it predicts that 

when a house is smaller than the threshold of 45 square 

meters, it will be cheap, and that when it is bigger than the 

threshold 45 square meters it will be expensive. Finally, 

note that in these examples we used only one predictor, 

but these examples can be extended to use more 

predictors. These predictors are often referred to as 

features. 

Figure 2. A linear regression line describing the 

relationship between house size and house prices. The 

black dots depict individual data points of houses on 

which the regression line is based. The horizontal axis 

depicts the size of the house (in m2), and the vertical 

axis depicts the price of the house (in US dollars). 

Figure 3. A logistic regression line describing the 

relationship between house size and whether or not a 

house is expensive. The black dots depict individual 

data points of houses on which the regression line is 

based. The threshold between a cheap and an 

expensive house is around 50 m2. The horizontal axis 

depicts the size of the house (in m2), and the vertical 

axis depicts whether the house is cheap or expensive. 

The logistic regression shows that the higher the house 

size is, the more likely the house is to be expensive. 

The gray line depicts a linear regression model based 

on the same data points. This would make prediction 

errors for some of the data points of the expensive 

houses. 

 



 

1.6. Current Study 

In previously cited work, automatic detection and 

interpretation of human motion,using a combination of 

computer vision and machine learning, including the use 

of Kinect, has been successfully attempted. Other studies 

have shown (as in point-light displays) that it is possible 

to detect gender, along with other actions, and even states 

of mind, given very limited visual input such as the 

movement of the major joints of the body in two 

dimensions. 

In the following study, we tested this inexpensive and 

widely available method of tracking human activity to see 

if it can be used to detect gender using a combination of 

gestural and postural information obtained from a brief 

series of poses. We hypothesized that we will be able to 

predict gender at a level greater than chance. We also 

investigated what the relevant contributions are of static 

 eat res that ro  hly map onto “ ody shape” (e   , hei ht, 

distance between shoulders) compared with movement 

 eat res that ro  hly map onto “ est re” (e   , chan es in 

angle between nodes over time). Getting a preliminary 

sense of the types of body configurations and movements 

which differentiate via gender will add to previous 

research on gender differences. 

2. Methods 

2.1. Participants and design 

Participants were 12 male and 12 female students 

aged 18 to 39 years (median: 22 years) from an American 

West-coast university. Gesture was manipulated as a 

within-participant factor, so each participant performed all 

twelve different gestures. 

2.2. Materials 

Participants were positioned in the center of a room 

of 6.0 meters by 5.5 meters, at a tape mark. An XBOX 

Kinect camera was attached to the wall directly in front of 

the participant, at a height of 1.35 meters. The distance 

between the participant and camera was 2.6 meters. The 

experimenter was located in an adjacent control room and 

was able to talk to the participant and see the participant 

through a window and vice versa. 

The XBOX Kinect camera identifies a skeletal 

wireframe at 30 frames per second for each person in front 

of the camera. The wireframe model consists of 20 nodes, 

each positioned in three dimensional space (i.e., 

outputting an x, y, and z value for each node). 

Additionally, the Kinect camera outputs whether a node 

was tracked or inferred. Inferring a note happens when it 

could not be accurately tracked and was therefore inferred 

from the position of other nodes.  

We selected twelve different gestures and postures 

that the participants had to perform. Gestures and postures 

were selected so that they contained a variety of different 

movements that together engaged the entire body. The 

different gestures and postures were all given a name and 

put in a fixed order. A list of the gestures and postures can 

be found in Table 1. 

2.3. Procedure 

When participants arrived they were led to the 

recording room and instructed to stand on the tape mark. 

Next, participants were told they would perform twelve 

different postures or gestures, each for ten seconds. The 

Table 1. A list of all the gestures that participants had 

to perform during the experiment, each for ten 

seconds. The third column depicts the classification 

accuracy for predicting gender when using only that 

gesture. 

Number Gesture Classification 

accuracy 

1 Head tilt from side to side 83% 

2 Arm wave above head 

from side to side 

71% 

3 Idle with hands on hips 67% 

4 Idle with arms crossed 63% 

5 Hula hoop motion 

(without actual hoop) 

75% 

6 Marching with knees to 

the side 

58% 

7 Lasso movements with 

right arm 

75% 

8 Twist (dance) 88% 

9 Snake-like arm waves 

with arms stretched side 

to side 

67% 

10 Pointing forward with left 

arm 

75% 

11 Pointing forward with 

right arm 

63% 

12 Hand language signaling 

other to go on 

79% 

 



 

experimenter would then go to the control room and start 

the recording. 

For each gesture recording, the experimenter first told 

the participant the name of the gesture and asked the 

participant to perform it to make sure it was understood 

correctly. Most of the gestures were correctly understood 

the first time. In case a participant did not correctly 

perform the gesture, the experimenter demonstrated the 

posture to the participant. The experimenter then asked 

the participant to perform the gesture until a stop signal 

was given. Next, the experimenter marked the start of the 

recording in the data and started a timer. After ten 

seconds, the experimenter again marked the data and told 

the participant to stop. This procedure was repeated for all 

twelve gestures. The entire procedure took less than five 

minutes per participant. 

2.4. Machine learning analysis 

We used the Kinect data to create a machine that can 

automatically detect the gender of the participant 

performing the gestures. The process we used for this 

consisted of the following steps that will be discussed in 

more detail in the following paragraphs: feature 

extraction, feature selection, training, and testing. 

To capture the most important parts of the data and 

reduce the noise in the measurements we calculated 

specific features from 15 of the 20 nodes that constituted 

the output of the Kinect.  (Instead of using both the hand 

and the wrist node, we used only the wrist nodes, and for 

the feet, only the ankle node- see Figure 1.)  First, we 

extracted features that described the static length of 

different body parts. For instance, features included the 

distance from right shoulder to left shoulder, the distance 

from the left elbow to the left shoulder, and the distance 

from the head to the neck. In total, we extracted fifteen 

static (body shape) features. 

Second, we extracted movement features. For this, we 

calculated the angles between two different bones of the 

skeleton (see Figure 1). Thus, for each frame (of the 30 

fps) that we recorded, we extracted 18 angles (e.g., the 

angle from the spine-to-neck bone to the neck-to-left- 

shoulder bone). Then, for each angle we got a trace as 

depicted in Figure 4. Subsequently, from this trace, we 

took the mean, standard deviation, and skewness as 

features. This resulted in 54 movement features (i.e., 

features that can change over time). 

After all features were extracted, we selected the 

features which were most useful. First, we created three 

groups of features. The first group contained all features. 

The second group only contained movement features (i.e., 

features that can change over time) and the third group 

only contained static features (i.e., features that cannot 

chan e o er time)  Finally,  or each  ro p, χ2 rankin  was 

applied, a standard technique to reduce the number of 

features in a machine learning input set (Witten & Frank, 

2011)  This ranks  eat res  ased on χ2 scores that indicate 

each feat re’s a ility to predict the correct class (in o r 

case the gender of the participant). After the ranking was 

made, we selected the top ten features for classification. 

This process resulted in three groups of ten features. 

For each individual feature group we developed 

machine learning algorithms using training and testing. To 

do this in an ecologically valid way, we did a separate 

training and testing session for each of the 24 persons in 

our dataset. For each person, we used data from the 23 

other persons to train the machine learning algorithm, and 

tested how well this algorithm was able to detect the 

gender of the person left out of the training dataset. This 

Table 2. The number of data points for all participants 

that were classified as men or women based on the top 

ten overall (both movement and static) features. The 

table indicates that men were misclassified slightly 

more often than women. 

Figure 4. An example of a trace describing the change 

of angle between right shoulder and right arm during 

the arm wave gestures. 



 

was repeated for all 24 persons in our dataset, and their 

results were averaged to an overall recognition accuracy. 

This method is called “lea e-one-person-out cross 

 alidation” and was done to make s re that  alidation was 

done as if the machine learning algorithm was tested on 

new people (i.e., a person it had not received training data 

from before). 

3. Results 

3.1. Overall classification 

Classification using the top ten of all features resulted 

in 83% recognition accuracy of gender, for persons that 

were not in the training dataset (i.e., using leave-one-

person-out cross validation). This was significantly higher 

than chance level of 50% (Z = 3.23; p < .001). Men were 

misclassified as women slightly more often than women 

were misclassified as men, as seen in Tables 2, 3 and 4. 

A ranked list of the selected features is depicted in Table 

5, which showed that almost all the selected features were 

static features and that only one was a movement feature.  

3.2. Static versus movement features 

As there was such an apparent discrepancy between 

the number of movement and static features that were 

selected for classification of gender (Table 5), we also 

explicitly compared classification with these two different 

feature types. Movement features were the features that 

were based on variability over time, whereas static 

Table 3. The number of data points for all 

participants that were classified as men or 

women based on the top ten static features. The 

table indicates that men were misclassified 

slightly more often and women were 

misclassified equally often. 

Table 4. The number of data points for all 

participants that were classified as men or 

women based on the top ten movement features. 

The table indicates that men were misclassified 

slightly more often and women were misclassified 

equally often. 

Table 5. A ranked list of the most useful overall 

(movement and static) features for classifying gender. 

Rank Feature Static or 

movement 

features 

1 Distance from left knee to left hip Static 

2 Distance from left foot to left knee Static 

3 Distance from right shoulder to 

left shoulder 

Static 

4 Distance from neck to tailbone Static 

5 Standard deviation of the angle 

from right hip to spine 

Movement 

6 Distance from right elbow to right 

shoulder 

Static 

7 Height of person Static 

8 Distance from head to neck Static 

9 Distance from right hand to right 

elbow 

Static 

10 Distance from left hip to right hip Static 

 

Table 6. A ranked list of the most useful static 

features for classifying gender. 

Rank Feature 

1 Distance from left knee to left hip 

2 Distance from right shoulder to left shoulder 

3 Distance from left foot to left knee 

4 Distance from right elbow to right shoulder 

5 Distance from neck to tailbone 

6 Distance from right foot to right knee 

7 Distance from left hand to left elbow 

8 Distance from head to neck 

9 Distance from left hip to right hip 

10 Distance from left shoulder to left elbow 

 



 

features described body properties that did not change 

over time. Classification based on only the static features 

resulted in 77% recognition accuracy, which is 

significantly higher than chance (Z = 2.65; p < .005). The 

top ten features selected for that are depicted in Table 6. 

Classification based on only the movement features 

resulted in 71% recognition accuracy, which is 

significantly higher than chance (Z = 2.06; p < .02). The 

top ten features selected for that are presented in Table 7.  

However, combining the top movement feature with the 

top static features increased the accuracy to 83%. 

3.3. Classification per gesture 

Finally, we also looked at classification per gesture. 

Although this resulted in lower overall classification 

accuracies because there was less data to train on, it was 

our goal to compare the different gestures for 

differentiating between men and women. The 

classification accuracies between men and women for 

each individual gesture are depicted in Table 1. In this 

study, the movements named head tilt and the twist were 

most successful in distinguishing between men and 

women. Hence, this suggests that men and women 

differed more when doing these gestures than when doing 

the other gestures. This resonates with previous work that 

demonstrates that lateral sway in the shoulders and hips 

was an important cue used in distinguishing men from 

women, since both these movements involved 

considerable lateral movement. 

4. Discussion 

Our machine learning algorithms in combination with 

Kinect computer vision performed significantly above 

chance in determining gender from a brief series of 

gestures.  We expect that it will be a useful method for 

tracking nonverbal behaviors crucial to facilitating 

presence in virtual social interactions in the future. 

4.1. Possible uses 

The ability to sense human body language 

unobtrusively and in real time may also be useful in 

designing better user interfaces, as an assist to social 

signal processing (Vinciarelli, Pantic, Bourlard, 2009) and 

to provide input to drive robot/avatar behavior (Tomari, 

Kobayashi, & Kuno, 2011) both in real life and in virtual 

or augmented reality (Vera, Gimeno, Coma, Fernández, 

2011).  Since Kinect is inexpensive, portable, and usable 

in a home environment, it shows potential to be an 

interface that can allow for more immersive, more 

interactive social presence experiences in the home.  

Another interesting subject for future research would 

be to explore the finding that in this study, Kinect was 

actually more successful when using static features than 

when using movement features. Since our participant 

population was small and consisted of a convenience 

sample of students and university affiliates of a similar 

age, it is reasonable to assume a fairly culturally 

homogenous group.  Thus, according to Yang, we might 

predict greater success from movement features, at least 

when humans are assessing the data. Other work suggests 

that movement heavily influences gender judgments made 

 y h mans  In Mather and M rdoch’s 1994 paper, they 

state that gender discrimination by humans in point-light 

displays is strongly dependent on the dynamic cue of 

lateral  ody sway in sho lders and hips  Birdwhistell’s 

work (1970) points out that although humans do exhibit 

sexual dimorphism, much of gender identification as done 

by humans is through nonverbal communication, 

including movement.  This opens up the opportunity to 

use Kinect to look at the social construct of gender, as in 

agents, as distinct from secondary sexual characteristics, 

since Kinect can consider anatomically based static 

features separately from movement features.   

Table 7. A ranked list of the most useful movement 

features for classifying gender. 

Rank Feature 

1 Mean angle between the left shoulder and neck 

via the center shoulder 

2 Mean angle between the right hip and spine via 

the tailbone 

3 Mean angle between the left shoulder and 

spine via the center shoulder 

4 Mean angle between the shoulders and spine 

5 Mean angle of left hip and right knee via the 

right hip 

6 Standard deviation of the angle between the 

shoulders and spine 

7 Standard deviation of the angle between the 

shoulders and tailbone 

8 Standard deviation of the angle between the 

right hip and the right foot via the right knee 

9 Standard deviation of the angle between the 

right hip and spine via the tailbone 

10 Mean angle from spine to head via the center 

shoulder 

 



 

 References 

Ahn, S. J., Bailenson, J.N., Fox, J., & Jabon, M. E. 

(2010).  Using Automated Facial Expression Analysis for 

Emotion and Behavior Prediction.  In Doeveling, K., von 

Scheve, C., & Konjin, E. A. (Eds.) Handbook of Emotions 

and Mass Media (349-369) London/New York: 

Routledge. 

Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & 

Young, A. W. (2004). Emotion perception from dynamic 

and static body expressions in point-light and full-light 

displays. Perception, 33(6), 717-746. 

Bailenson, J. N., Blascovich, J., Beall, A. C., and Loomis, 

J. M. (2001). Equilibrium theory revisited: Mutual gaze 

and personal space in virtual environments. Presence: 

Teleoperators and Virtual Environments 10(6), 583-598. 

Bailenson, J. N., Blascovich, J. (2011). Infinite Reality- 

Avatars, Eternal Life, New Worlds, and the Dawn of the 

Virtual Revolution.  New York: William Morrow 

Birdwhistell, R.L.(1970) Kinesics and Context. 

Philadelphia: University of Pennsylvania Press. 

Bishop, C. M. (2006). Pattern Recognition and Machine 

Learning. New York: Springer. Bush, R. (2009) IARPA 

BROAD AGENCY ANNOUNCEMENT. Retrieved 

11/01/11 from: http:// 

www.iarpa.gov/Reynard_BAA_Amend1.pdf 

Biocca, F., Harms, C., & Gregg, J. (2001). The networked 

minds measure of social presence: Pilot test of the factor 

structure and concurrent validity. Paper presented at the 

International Workshop on Presence, Philadelphia, PA. 

Available at: 

http://astro.temple.edu/~lombard/P2001/Biocca2.pdf. 

Biocca, F. (1997). The cyborg's dilemma: progressive 

embodiment in virtual environments. Journal of 

Computer-Mediated Communication, 3 (2). 

Cutting, J. E., Proffitt, D. R., & Kozlowski, L. T. (1978). 

A biomechanical invariant for gait perception. Journal of 

experimental psychology: Human perception and 

performance, 4(3), 357-72. 

Garau, M., Slater, M., Vinayagamoorthy, V., Brogni, A., 

Steed, A., and Sasse, A. M. (2003). The impact of avatar 

realism and eye gaze control on the perceived quality of 

communication in a shared immersive virtual 

environment. Proceedings of SIGCHI, 529–536. 

GamesBeat- Interpreting Innovation (January 27, 2011) 

www.venturebeat.com Microsoft's Kinectified game 

business grows 55 percent — fastest-selling consumer 

electronics device in history. Retrieved 11/01/11 from: 

http://venturebeat.com/2011/01/27/ microsofts-

kinectified-game-business-grows-55-percent/ 

IJsselsteijn, W. (2003) Staying in Touch. Social Presence 

and Connectedness through Synchronous and 

Asynchronous Communication Media. Proceedings of 

HCI International Conference on Human-Computer 

Interaction, Lawrence Erlbaum Associates, New Jersey 

924-928. 

IJsselsteijn, W. (2006) Mediated social touch: a review of 

current research and future directions, Virtual Reality 

Johansson, G. (1973). Visual perception of biological 

motion and a model  or its analysis’ attention  Perception 

and Psychophysics, 14(2), 201–211. 

Kane, H. S., McCall, C., Collins, N. L., (2012) Mere 

presence is not enough: Responsive support in a virtual 

world Journal of Experimental Social Psychology, 48(1), 

37-44   DOI: 10.1016/j.jesp.2011.07.001    

Mather, G., Murdoch, L. (1994) Gender discrimination in 

biological motion displays based on dynamic cues. 

Proceedings: Biological Sciences, 258(1353) 273-279. 

Michael, N., Dilsizian, M., Metaxas, D., & Burgoon, J. K. 

(2010). Motion profiles for deception detection using 

visual cues. Computer Vision (Lecture Notes in Computer 

Science), 6316, 462-475. 

Michalak, J., Troje, N. F., & Heidenreich, T. (2011). The 

effects of mindfulness-based cognitive therapy on 

depressive gait patterns. Journal of Cognitive and 

Behavioral Psychotherapies, 11, 13–27. 

Meservy, T. O., Jensen, M. L., Kruse, J., Burgoon, J. K., 

& Jay, F. (2005). Detecting deception through automatic, 

unobtrusive analysis of nonverbal behavior. IEEE 

Intelligent Systems, 20(5), 36-42 . 

Parsons, T. D., Bowerly, T., Buckwalter, J. G., & Rizzo, 

A. A. (2007). A controlled clinical comparison of 

attention performance in children with ADHD in a virtual 

reality classroom compared to standard 

neuropsychological methods. Child Neuropsychology, 

13(4), 363-381. 

http://www.iarpa.gov/Reynard_BAA_Amend1.pdf
http://astro.temple.edu/~lombard/P2001/Biocca2.pdf
http://www.venturebeat.com/
http://venturebeat.com/2011/01/27/
http://www.springerlink.com/index/7L0051038X81771V.pdf
http://www.springerlink.com/index/7L0051038X81771V.pdf
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=5
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=5
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=5


 

Schroeder, R. (2002). Social interaction in virtual environ- 

ments: Key issues, common themes, and a framework for 

research. In R. Schroeder (Ed.), The social life of avatars: 

Presence and interaction in shared virtual environments, 

(pp. 1–18). London: Springer-Verlag. 

Shen, C., & Williams, D. (2011). Unpacking time online: 

Connecting internet and massively multiplayer online 

game use with psychosocial well-being. Communication 

Research, 38 (1), 123-149. 

Sung, J., Ponce, C., Selman, B., & Saxena, A. (2011). 

Human activity detection from RGBD images. AAAI 2011 

Workshop: Plan, Activity, and Intent Recognition. 

Tomari, R. (2011). Multi-view head detection and 

tracking with long range capability for social navigation 

planning. Advances in Visual Computing. Retrieved from 

http:// 

www.springerlink.com/index/13128L1H47706416.pdf 

Vera, L., Gimeno, J., Coma, I., & Fernández, M. (2011). 

Augmented mirror: Interactive augmented reality system 

based on Kinect. International Federation For 

Information Processing, 483-486. 

Vinayagamoorthy, V., Steed A., Slater M. (2008) The 

impact of a character posture model on the 

communication of affect in an immersive virtual 

environment IEEE Transactions on Visualization And 

Computer Graphics, 14 (5), 965-981. 

Vinciarelli, A., Pantic, M., & Bourlard, H. (2009). Social 

signal processing: Survey of an emerging domain. Image 

and Vision Computing, 27(12), 1743-1759. 

Walther, J. B. (1996). Computer-mediated 

communication. Communication research, 23(1), 3. Sage 

Publications. Retrieved from 

http://crx.sagepub.com/content/23/1/3.short 

Witten, I. (2011). Data Mining: Practical Machine 

Learning Tools and Techniques. Morgan Kaufman, 

Burlington MA 

Yang, P. (2010). Nonverbal gender differences: 

Examining gestures of university-educated Mandarin 

Chinese speakers. Text & Talk - An Interdisciplinary 

Journal of Language, Discourse & Communication 

Studies, 30(3), 333-357. 

Yee, N., Bailenson, J.N., Urbanek, M., Chang, F., & 

Merget, D. (2007). The unbearable likeness of being 

digital; The persistence of nonverbal social norms in 

online virtual environments. Cyberpsychology and 

Behavior, 10, 115-121. 

Yu, S., Tan, T., Huang, K., Jia, K., & Wu, X. (2009). A 

study on gait-based gender classification. IEEE 

transactions on image processing : a publication of the 

IEEE Signal Processing Society, 18(8), 1905-1910. 

 

http://www.springerlink.com/index/13128L1H47706416.pdf
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=4
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=4
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=4
http://apps.webofknowledge.com.ezproxy.stanford.edu/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=3F1M12doi4PjhCOLbFc&page=1&doc=4
http://crx.sagepub.com/content/23/1/3.short
http://vhil.stanford.edu/pubs/2007/yee-nonverbal.pdf
http://vhil.stanford.edu/pubs/2007/yee-nonverbal.pdf
http://vhil.stanford.edu/pubs/2007/yee-nonverbal.pdf

