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Abstract
This paper presents the findings of new analysis of 

data collected from a prior user study comparing a CAVE-
like environment and a Fish Tank VR setup. In particular, 
our earlier study focused on subject performance across 
multiple conditions and this study focuses on demographics 
and subject behavior during trials.  We found some 
unexpected relationships between subject background and 
performance, as well as interesting details of the marking 
process with regard to timing and posture. We present 
novel ways to analyze the large amounts of data gathered 
in virtual reality user studies. 

1 Introduction 

User studies are an important part of virtual reality 
research because they provide insight into how well a 
subject pool can use systems and techniques to solve real 
problems. We designed and ran a user study in order to 
examine differences in performance of a task associated 
with different levels of immersive system. In this study the 
task was derived from a biological one, where scientists 
visualize a complex structure normally rendered as 3D 
volume data, and have to count the occurrence of specific 
features. In order to avoid the problem of the 3D volume 
data rendering at different speeds on different machines, we 
abstracted out of this a generic task  in which subjects were 
asked to place the tip of 3D cone-shaped markers inside 
spheres that represented cells from a biological application. 
Subjects did this task in five variations of a four-walled 
CAVE-like environment and a ‘Fish Tank’ Virtual Reality 
setup (a CRT screen with active stereo and six degree of 
freedom head- and hand-tracking).  Our initial analysis was 
aimed at discovering which environment subjects marked 
spheres fastest and most accurately in, as well as which 
environment subjects preferred. 

In an earlier work [1], data we collected led to four 
significant findings: a) in the Cave the subjects preferred 
medium sized or large spheres over small spheres, b) when 
only a few of the targets had been pre-marked, larger 
spheres were marked faster than small spheres, c) large 
spheres are marked most accurately, and d) the single Cave-
wall display is not comparable to the fish tank virtual 
reality environment when the spheres are small.  
Additionally, occlusion and larger field of view inhibited 
performance in the Cave more than at the fish tank when 
the task was dominated by visual search. 

Below we present new findings after further analysis of 
the data collected previously. 

2 The Experiment

We have implemented a software application named 
VOX (for VOlume eXplorer) that can allow users to mark 
3D spheres in virtual reality. Our goal was to find out how 
well this task could be performed in different types of 
virtual environments and at different dataset scales. This 
system was motivated by our collaboration with 
developmental biologists at Brown University with whom 
we built VOX for immersively viewing data sets from 
confocal microscopes. 

Counting cells or cellular components is standard 
practice in studying many biological processes, such as 
assessing the proliferation of a tissue and determining the 
size of cells. The density of certain components within a 
particular volume is often compared in control and 
experimental samples. Immunohistochemical techniques 
that use antibodies, tagged (or labeled) with a fluorochrome 
or other molecule that fluoresces under particular 
wavelengths of light, allow biologists to highlight (or 
recognize) the structures of interest within a tissue 
preparation. The digitized data is collected with a laser 
scanning confocal microscope that generates a static 
volume data set. 

Counting cells requires uniquely identifying and 
tallying the cells within a volume; here the main challenges 
are isolating individual cells and (due to the large number 
of cells) avoiding double-counting.  We selected this task 
because it did not require specialized knowledge of biology 
but still involved visualizing and interacting with the 
biological data. 

In immersive VR, the user is fully immersed in a three-
dimensional world that is completely computer-generated. 
The user sees a stereo image of the dataset through stereo 
glasses, and the user’s head is tracked so that the image can 
be interactively rendered for the user’s viewpoint.  Direct 
3D interaction with objects is also possible. Thus, we 
expected immersive VR would be a good technology for 
the cell-counting task because head-tracked stereo viewing 
would ease both seeing the dense cluster of cells and 
annotating already counted cells.  However, there are many 
variations of immersive VR systems and we could not 
predict which combination of system attributes (e.g., field 
of view, scale of data) would be “best”.  This study was 
aimed at investigating  these issues. 

Our visualization system runs in a Fish Tank VR 
environment and also in our Cave, which is a CAVE-like 
virtual reality system. The Cave can be configured to show 
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images only on its front wall, making it a single-wall 
display. 

In our study users used cone-shaped icons to mark 
spheres while the computer tracked the total number of 
markers placed. In the Cave, we scaled the data set to be 
0.30m3, 0.91m3, and 2.13m3; at the single wall and the fish 
tank we used only the 0.30m3 data set because only that size 
would completely fit on the smaller screen.  Below we refer 
to the five conditions as follows: CS = “Cave small” 0.30m3

condition, CM = “Cave medium” 0.91m3 condition, CL = 
“Cave large” 2.13m3 condition, SW = “Single wall” Cave 
condition, and FT = Fish Tank condition. 

Because we were interested in the rate of marking, it 
was not necessary for subjects to mark the entire data set.  
However, we expected that marking rates might vary over 
time—in particular, as more cells were marked the task 
might become dominated by visual search for the next 
unmarked cell. Time constraints also limited the number 
and length of conditions we could use. Consequently, 
instead of having the subjects mark all 250 spheres in a data 
set, we divided the marking task in two halves: we started 
with an unmarked data set (UM) and gave the subjects two 
minutes to mark as many spheres as they could. Then we 
interrupted the experiment, removed the markers the 
subject had placed, and loaded spheres in the same 
configuration, but with 210 of them pre-marked (PM). The 
subject had another two minutes to mark the remaining 40 
spheres.  

3 Analysis
Below we present our additional analysis of the data 

collected during the user study.  In particular, we report our 
findings on a demographic analysis, an analysis of tracker 
data, an analysis of the marking process, and further 
insights into why the 0.30m3 data set was marked slower 
than the larger ones. 

3.1 Description of variables 
Response Variables (dependent variables). The 

dependent variable is the count of the number of correctly 
marked spheres. 

Independent Variables. The condition was the only 
independent variable (CS, CM, CL, SW, FT). 

Explanatory Variables. Age, type of degree, and 
gender were not controlled for.  Additionally, in our 
analysis we measured the number of seconds each user 
spent, respectively, tumbling and moving the data set in 
UM and PM. 

3.2 Marking accuracy and rate 

The data shows several interesting results with respect 
to marking accuracy and rate.  A marker was “accurately 
placed” if its tip was inside a sphere and it was considered 
“inaccurately placed” if its tip was outside of the sphere.  
We expected that if a subject placed markers slowly then 
they would place them accurately.  However, the data 
shows that there was no correlation between marker 
accuracy and rate. Before the experiment we had instructed 
all subjects to focus both on marker accuracy and rate, so 

perhaps they actually followed this guideline, and the 
differences are caused by their general ability to use our 
system, which might be influenced by experience with 
other computer programs, especially games. 

3.3 Relationships between marking rate and 
independent and explanatory variables 

Our analysis also showed a relationship between the 
response variable (the number of markers placed) and the 
independent (condition) and explanatory variables (age, 
degree type, gender, time spent rotating data set).  Since our 
response variable is a count, it would have a Poisson 
distribution. The null hypothesis is that it is unrelated to any 
of the independent or explanatory variables. We use log-
linear regression analysis from the generalized linear model 
[2]. 

Many user study analyses of virtual reality applications 
have been published in the past [3-10], but few of them 
went beyond the direct and exclusive analysis of the 
response variables. 

3.3.1 Unmarked condition 

Condition is significant. When no spheres had been 
pre-marked we found the condition is significant (Chi-
squared to delete from the model is 89.17 on 4 d.f.). 
Subjects counted a significantly higher number of spheres 
in CM and CL than CS, but they were not significantly 
different from each other.  SW is not significantly different 
from CS. Subjects counted significantly more spheres in FT 
than CS, but less than CM or CL (these statements are 
taking into account the other terms in the regression 
analysis).

We think that the fact that the spheres were bigger 
made them easier to mark, despite the greater distance 
between the spheres. It is our hypothesis that at some level 
of scale larger than CL, the marking rate will start to drop 
because the user spends significantly more time navigating 
between spheres. More sample points in the condition 
domain would be needed to determine the “optimum” level 
of scale in the Cave. 

Degree is significant. Non-Computer Science 
concentrators marked a significantly lower number of 
spheres than Computer Science concentrators. (Chi-squared 
for deletion from model is 29.78 on 1 d.f.). 

We think that this result may be influenced by the 
subjects’ amount of experience with similar, game-like 
tasks, but only a further user study that collects that 
information can prove this hypothesis. 

Time spent rotating model. Subjects that spent more 
time tumbling the data set with the trackball marked 
significantly fewer spheres than those who spent less time 
tumbling the data set with the trackball. (Chi-squared for 
deletion from model is 7.411 on 1 d.f.). 

The explanation for this result could be that those 
subjects that spent less time tumbling the data set had more 
time to place markers. 
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3.3.2 Pre-marked condition 

Condition is significant. Subjects did not mark 
significantly different numbers of spheres in CS, CL, and 
SW. CM and FT were associated with higher sphere counts, 
but were not significantly different from one another. Chi-
squared for removal is 14.4 on 4 d.f.

Pre-marked trackball tumbling is significant.  Subjects 
that spent more time tumbling the data set with the trackball 
marked significantly fewer spheres than those who spent 
less time tumbling the dataset. Chi-squared for removal is 
13.29 on 1 d.f. (very highly significant). Notice that this 
result is aligned with the corresponding result for the 
unmarked condition. 

Figure 1: Wand position in CS-UM as seen from the rear of 
the Cave. The Cave is 2.44m wide and 2.44m high, the 
origin of the coordinate system is in its center. The 
coordinate axes indicate position in meters. 

Figure 2: Wand position in CL-UM, as seen from the rear of 
the Cave. 

3.4 Analysis of tracker data 

In each experiment we stored position and orientation 
of head and hand once every second. Then we graphed the 

results with scatter plots where each dot represents a tracker 
sample. We use colors to distinguish subjects. 

Figure 1 shows the result for condition CS-UM. The 
dots are projected on a plane parallel to the front wall of our 
four-walled Cave. Most users moved the wand relatively 
little. 

Figure 2 shows the corresponding graph for CL. It is 
obvious that the users moved around a lot to reach spheres. 
Instead of reaching out for spheres they could have 
navigated the data set and bring the spheres to them, but 
they preferred to take advantage of the space in the Cave. 

Figure 3 shows the head tracker data for CL-UM. The 
head moved much less than the hand. This graph is the one 
with the most head movement in our study, and thus it 
indicates that for our marking task most head tracking 
happened between about 1.2m and 1.8m from the ground. 

Figure 3: Head position in CL-UM, as seen from the rear of 
the Cave.

3.5 Marking rate development 

In Section 3.3 we analyzed how the marking rate as a 
whole (i.e., total number of markers placed in each trial) is 
related to other variables of the experiment. In this section 
we focus on the marking process itself, looking at the times 
when individual markers were placed. 

In our studies subjects marked spheres with two initial 
conditions: UM and PM. We chose these two tasks because 
they simulated the beginning of the marking process: when 
it is easy to pick out unmarked spheres and the marking rate 
is determined by the speed the person can move the hand to 
place a marker. Towards the end of a real marking process, 
it gets harder to find non-marked spheres and placing a 
marker is not as critical any more.  We expected the curve 
to be exponential because we assumed that it is more and 
more difficult to place markers the more are placed. 

Figure 4 shows the result for the large scale data set 
(CL) in the Cave. The graph consists of two parts: the left 
shows the marking process in the UM condition, the right 
shows PM. As in the scatter plots, colors distinguish users. 
The graph shows that all users’ marking rates decreased 
over time. There is a significant difference in the slope of 
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the curves in UM and PM, indicating that we are missing 
data between UM and PM to know how the complete graph 
looks, one that we would get if subjects were given enough 
time to mark all spheres. However, even with the existing 
data we can see that the curve is not strictly exponential. 
We hypothesize that this is because subjects typically 
tumble the data set and then work on a previously 
unmarked cluster of spheres, in which marking is fast at the 
beginning and slower towards the end, before the user 
tumbles the data set again. In the graph, when there is a gap 
between two marker placement events, it can be assumed 
that users were navigating by tumbling or moving the data 
set.

Figure 4: Marker placement times for CL. 

To learn more about the rate at which subjects marked, 
we looked at the time that passed between any two 
consecutive marker placements. Figure 5 shows the 
corresponding graph for CL. The middle 90% of these 
times are between 0.7 and 2.7 seconds for UM and between 
0.9 and 13.3 seconds for PM (for this analysis we ignored 
the slowest and fastest 5% of the times to reduce the 
number of outliers). The 90% boundaries for the other 
conditions are listed in Table 1. 

Figure 5: Marker placement rate for CL. 

Table 1: 90% of the times between marker placements 
were between these numbers of seconds. 

 CS CM CL SW FT 

UM 0.8..3.1 0.7..2.3 0.7..2.7 0.8..3.0 0.7..3.4 

PM 1.2..10.5 1.1..10.9 0.9..13.3 1.3..11.5 1.1..11.4 

Condition CL-PM has the greatest range of times 
between marker placements. This may indicate that large 
spheres are easy to mark when they are in reach, but when 
none are in reach navigation takes longer than under other 
conditions. 

3.6 Head and hand posture 

A hypothesis we had on user posture was that subjects 
would hold the wand at the same average distance from the 
head, independent from the data set’s level of scale, 
because each subject had their own “natural” distance. We 
were surprised that the data suggests the opposite. Table 2 
lists the average distance of the wand from the midpoint of 
the eyes in the three Cave conditions. The table shows that 
with larger scale data sets the average distance from eyes to 
wand increased. The difference between UM and PM 
within each condition is not significant. We do not list SW 
because it is comparable with CS, and we do not list FT 
because it is not comparable since the user sits in front of 
the computer as compared to standing in the Cave. 

Table 2: Average (and standard deviations) distance of 
wand from midpoint between eyes, given in meter. 

 CS CM CL 

UM 0.38 (0.05) 0.53 (0.10) 0.59 (0.10) 

PM 0.39 (0.06) 0.53 (0.10) 0.58 (0.08) 

We analyzed the same tracker data as above, wand 
position relative to head, for the angle at which the wand 
was held relative to the head direction (see Table 3). We 
found that there is no significant difference between 
conditions CS, CM, and CL. However, there is a difference 
between UM and PM. In PM the average angle is 
consistently higher than in UM, and it has a higher standard 
deviation. We think this result can be explained by the 
subjects having to look around more in PM compared to 
UM, because they have to search for unmarked spheres. 

Table 3: Average (and standard deviations) angle between 
vector from eyes to wand and head direction, given in 
degrees. 

 CS CM CL 
UM 29.2 (7.3) 23.2 (9.6) 23.1 (10.6) 
PM 32.7 (10.3) 34.4 (15.6) 38.4 (19.1) 

4 Discussion

We think that one of the most important results of our 
user study is that the working volume plays a significant 
role in a highly interactive task in virtual environments. The 
more the working volume resembles the natural, 
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comfortable range of human motion, the more efficient a 
task can be performed. In our user study those levels of 
scale of the data set which took advantage of the bigger 
working volume in the Cave, compared to the Fish Tank, 
resulted in higher marking rates. We think that for even 
larger spheres than we tested, at some point the marking 
rate will become smaller again, and it would be interesting 
to find out when this happens. A trivial “worst case” 
scenario to support this hypothesis is that if each sphere is 
about the size of the Cave, then it would take a 
considerably larger amount of interactions to navigate to 
unmarked spheres and increase occlusion, which would 
outweigh the benefit of visually easy-to-target spheres. Our 
result in Section 3.4 supports this hypothesis, because it 
shows that the subjects took advantage of most of the 
available space in the Cave to mark the spheres in condition 
CL. Bigger spheres than in CL would mean that more 
navigation will be required, which, according to our 
interpretation of the results in Section 3.3, would result in a 
smaller marking rate. 

5 Conclusions

We presented novel ways to analyze the large and 
detailed amounts of data that can be gathered in user studies 
involving virtual environments. Our analysis is not meant to 
be complete, but we think it is likely that other interesting 
and meaningful relationships can be found in our data. 

In the future we want to refine our data recording 
mechanisms to store information about the user 
performance in virtual environments on top of low-level 
tracker events, for instance the relationship between 
features in the data set and the viewing direction. We would 
also like to record user behavior in greater detail than just 
tracking head and hand. Furthermore, we would like to test 
more levels of scale to refine the number of samples we 
have for this condition. 
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