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Abstract
Able-bodied participants are able to move forward in a 

Virtual Environment (VE) by imagining movements of their 
feet. This is achieved by exploiting a Brain-Computer 
Interface (BCI) which transforms thought-modulated EEG 
signals into an output signal that controls events within the 
VE. The experiments were carried out in an immersive 
projection environment, commonly referred to as a "Cave” 
in which participants were able to move through a virtual 
street by foot imagery alone. Experiments of BCI feedback 
on a normal monitor, VE experiments with a head-mounted 
display (HMD) and in the Cave-VE are compared. 

Keywords — Virtual environment (VE), Brain-
Computer Interface (BCI), walking, thoughts

1. Introduction 

“Yes he was walking! The illusion was utterly 
convincing …” experienced the leading actor from Arthur 
C. Clark in the book 3001, the final odyssey [1], when he 
was wearing a “Braincap” connected to the “Brainbox”. 
Thereby he could experience this science fiction technology 
and explore different virtual and ancient real worlds. Has 
this dream gone real?  Here we show that participants are 
able to move forward – “to walk” – in a Virtual 
Environment (VE) by imagining movements of their feet.  

The improvement of seamless and natural human-
computer interfaces is an all-the-time necessary task in 
virtual reality (VR) development. An interesting research 
problem is to realize locomotion through a VE only by 
mental activity or "thought". Typically, participants 
navigate by using a hand-held device, such as a joystick or 
a wand. Unfortunately contradictory stimuli appear in such 
situations; on the one hand the world around them is 
moving, which generates the illusion of walking, but on the 

other hand the participant is thinking on his index finger, 
for pressing the button on the joystick. This results in a 
reduced sense of being present in the VE, and is one of the 
causes of simulation sickness [2]. 

A possible next step towards next-generation interfaces 
could be achieved by exploiting a Brain-Computer Interface 
(BCI) which represents a direct connection between the 
human brain and the computer [3]. The 
electroencephalogram (EEG) of the human brain 
encompasses different types of oscillatory activities, in 
which the oscillations in the alpha and beta band (event-
related desynchronization, ERD [4]) are particularly 
important to discriminate between different brain states 
(e.g. imagination of movements). A BCI transforms 
thought-modulated EEG signals into an output signal [3] 
that can control events within that VE [5, 6]. 

The goal of this work is to demonstrate that it is 
possible to move through different VEs, e.g. a virtual street, 
without any muscular activity, when the participant only 
imagines the movement of both feet and to show the 
influences of different feedback modalities on the same 
task. 

VR provides an excellent testing ground for procedures 
that may apply later in reality. One important future 
application may the use of VE for people with disabilities. 
If it is possible to show that people can learn to control their 
movements through space within a VE, it would justify the 
much bigger expense of building physical devices as e.g. a 
robot arm controlled by a BCI. 

2. Methods 

2.1. Graz Brain-Computer Interface 

Direct Brain-Computer communication is a novel 
approach to develop an additional communication channel 
for human-machine interaction. The imagination of 
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different types of movements, e.g. right hand, left hand, 
foot or tongue movement, results in a characteristic change 
of the EEG over the sensorimotor cortex of a 
participant [4]. 

The Graz-BCI detects changes in the ongoing EEG 
during the imagination of hand or foot movements and 
transforms them into a control signal [7]. Three bipolar 
derivations, located 2.5 cm anterior and posterior to the 
electrode positions C3, Cz and C4 of the international 10/20 
system [8] were recorded with a sampling frequency of 
250 Hz (sensitivity was set to 50µV) and bandpass filtered 
between 0.5 and 30 Hz. The ground electrode was 
positioned on the forehead.  

The logarithmic bandpower (BP) was calculated for 
each channel by digitally band-pass filtering the EEG 
(using a Butterworth filter of order 5) in the upper alpha 
(10 - 12 Hz) and beta band (16 - 24 Hz), squaring the signal 
and averaging the samples over a 1-s epoch. The resulting 4 
BP features were transformed with Fishers linear 
discriminant analysis (LDA) [9] into a control signal. 
Finally the computed control signal was used to control / 
modify the feedback (FB) and either visualized on the same 
PC as a bar (see Figure 1a) or sent to the VE as a steering 
input inside a virtual world (see Figure 1b and 1c) [5].  

The complete biosignal analysis system consisted of an 
EEG amplifier (g.tec, Graz, Austria), a data acquisition card 
(National Instruments Corporation, Austin, USA) and a 
recording device running under WindowsXP (Microsoft 
Corporation, Redmond, USA) on a commercial desktop 
PC [10]. The BCI algorithms were implemented in 
MATLAB 6.5 and Simulink 5.0 (The MathWorks, Inc., 
Natick, USA) using rtsBCI [11] and the open source 
package BIOSIG [12].  

Detailed information about the physiological 
background of motor imagery and ERD can be found 
elsewhere [4, 13], also about signal processing, feature 
extraction and the Graz-BCI [7, 10] and generally about 
various BCI systems [3, 14]. 

2.2. Participants and experimental paradigm 

Three healthy participants (between 23 and 30 years) 
took part in these experiments over 5 months. All were 
right handed and without a history of neurological disease 
and gave informal consent to participate in the study.  

In the first step a number of training runs (TR) were 
performed with each subject. These data were used to setup 
a classifier, which can be used in the next step for providing 
a feedback (FB) to the subject. The visual FB informs the 
participant about the accuracy of the classification during 
each imagery task. 

The performances of three different FB conditions are 
compared: first the results of the standard BCI bar-FB with 
a simple bar (see Figure 1a), secondly using a head 
mounted display (HMD) as FB device (see Figure 1b) and 
finally using a highly immersive “Cave” projection 
environment (see Figure 1c).   

Each feedback condition was measured multiple times 
(called sessions) and the order of recording was condition 

bar, HMD, Cave, HMD, bar. Figure 3 displays which type 
of FB has been used in each run and session, respectively. 
In each session 4 runs have been performed, whereby each 
run consisted of 40 trials (20 foot and 20 right-hand cues, in 
random order) based on the standard Graz-BCI 
paradigm [7]. Each trial lasts about 8 second and between 
the trials was a randomized interval in the range from 0.5 to 
2 seconds. The data of the standard BCI run was used to 
compute a LDA classifier and the error rates were estimated 
by a 10 times 10-fold cross-validation LDA-training. The 
calculated classifier with the best classification accuracy 
during the imagination period (between second 4.5 and 8, in 
0.5 s intervals) was selected for further use in all feedback 
runs. Further details of BCI training with motor imagery 
can be found elsewhere [7]. 

Figure 1:  Schematic model of the used BCI-VR 
system with the participant wearing the electrode 

cap. Three different visual feedback modalities are 
displayed: (a) standard feedback whereby a 

vertical bar is controlled by the BCI output. (b) The 
participant is wearing a HMD. A screenshot of the 
virtual environment as seen by the participant is 

displayed at the far right. (c) Picture of one 
participant during the experiment in a Cave-like 
system. The surrounded projected environment 
creates the illusion of being in a virtual street. 

(b,c) Navigation through the VE is controlled by 
the output of the BCI. 

2.3. Simple standard BCI feedback 

In each run the participant had to imagine feet or right 
hand movement in response to a visual cue-stimulus 
presented on a computer monitor, in the form of an arrow 
pointing downwards or to the right, respectively. In 
addition to the visual cue an auditory cue stimulus was also 
given either as a single beep (hand imagery) or as double 
beeps (feet imagery). A visual feedback in the form of a 
moving bar (see Figure 1a) was given to inform the 
participant about the accuracy of the classification during 
each imagery task (i.e. classification of right hand imagery 
was represented by the bar moving to the right, 
classification of foot movement imagery made the bar 
moving downward).  

PRESENCE 2005

26



2.4. Virtual feedback with a HMD  

Virtual reality FB was presented with VRjuggler [15] 
and a Virtual Research V8 HMD (Virtual Research 
Systems, Inc., Aptos, USA) driven by an ATI Radeon 9700 
graphics card (ATI Technologies, Inc., Markham, Canada). 
The given task of the participant was to walk to the end of 
the street inside this virtual city, whereby any time the 
computer identified the participant’s brain pattern as a foot 
movement a motion happened (see Figure 1b). The same 
BCI paradigm as in the condition above (section 2.3) was 
applied, only the cue was given just acoustically. Correct 
classification of feet motor imagery was accompanied by 
moving forward with constant speed in the projected virtual 
street and the motion was stopped on correct classification 
of hand motor imagery (see Table 1). Incorrect 
classification of foot motor imagery resulted as well in 
halting, and incorrect classification of hand motor imagery 
in backward motion [16]. The walking distance was scored 
as a “cumulative achieved mileage” (CAM), which is the 
accumulated forward distance covered during feet 
movement imagination and is used as a performance 
measurement.  

  subject imagined 

  foot movement hand movement 

foot movement forward stop 
Cue class 

hand movement backward stop 

Table 1: Dependency between the predetermined 
cue classes and the movements imagined by the 
subject and their resulting motions performed in 

the virtual street. 

2.5. Virtual feedback in the Cave 

Two  sessions were performed in London in a multi-
projection based stereo and head-tracked VE system 
commonly known as a “Cave” [17]. The particular VE 
system used was a ReaCTor (SEOS Ltd.¸ West Sussex, 
UK) which surrounds the user with three back-projected 
active stereo screens (3 walls) and a front projected screen 
on the floor (see Figure 1c). Left- and right-eye images are 
alternately displayed at 45Hz each, and synchronized with 
CrystalEye™ stereo glasses. A special feature of any VE 
system is that the images on the adjacent walls are 
seamlessly joined together, so that participants do not see 
the physical corners but the continuous virtual world that is 
projected with active stereo [18]. The application 
implemented in DIVE [19] was a virtual main street with 
various shops on both sides (see Figure 2). Some of the 
shops could theoretically be visited but in this experiment 
the task was to go only straight forward as far as possible. 
The street was populated with some virtual characters that 
walked along the street, whereby the characters were 
programmed to avoid collisions with the participant. The 
communication between the BCI and the VR was done via 
the Virtual Reality Peripheral Network (VRPN, [20]). 

Figure 2:  Participant in the virtual main street with 
shops and animated avatars during the Cave-FB. 
The subject wears an electrode cap (connected to 

the amplifier) and shutter glasses. 

3. Results 

All participants were able to navigate in the different 
VE’s and the achieved BCI performance in the VR tasks 
was comparable to standard BCI recordings. The usage of 
VR as FB was stimulating the participant’s performances. 
Especially in the Cave condition (highest immersion) the 
performance of 2 participants was excellent (up to 100% 
BCI classification accuracy of single trials), although 
variability in the classification results between individual 
runs occurred (see Figure 3 and 7). 

All runs performed consecutively on one day are called 
one session and most of the time one session contains four 
runs. In Figure 3 all performed runs over a period of 5 
month with simple standard bar-FB, HMD-FB and Cave-
FB and the trainings runs without FB (TR) are indicated in 
each subject. All runs following the indicated date are 
performed at this day. Each run consisted of 40 trials, 20 
trials with a cue for foot imagery and 20 for right hand 
imagery in randomized order. The duration of a trial is 8 
seconds (a random pause of 0.5 to 2 seconds is added 
between the trials to avoid adaptation), therefore a run 
lasted approximately 6.5 minutes and one session lasted 
about 1 hour including the time electrode montage.  

Concerning the difference between the various 
feedback modalities no statistical evaluation of the data was 
possible, because only three individuals participated in 
these experiments. 

The results are split into two parts: on the one hand the 
classification accuracy of the BCI is interesting to study the 
influence of the different FBs on the participants and on the 
other hand the task performances. 

3.1. BCI classification 

The BCI classification error is a measure how good the 
two brain states could be identified in each run. A 
classification error of 0 % denotes a perfect separation 
between the two mental tasks (20 examples for right hand 
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movement imagination and 20 examples for foot movement 
imagination). A random classification would result in a 
classification error of 50 %. The error varies over the time 
of the trial (see Figure 4, the exemplarily used runs are 
indicated in Figure 3 with a black diamond). At second 3 
the participant heard the cue (single or double beep) and 
started to imagine the desired movement. The optimal 
performance varies over the measurements and between 

individuals, but is typically at least two seconds after the 
trigger [21], see Figure 4 for the BCI classification of each 
participant of one run during the Cave experiments. 
Especially participant P3 could achieve a long and stable 
brain pattern over nearly the whole FB time (last row in 
Figure 4), which directly corresponds to very good CAM in 
Figure 5. 

Figure 3:  Classification error (in %) for all runs of the 3 participants. Runs with BAR-FB, HMD-FB and 
Cave-FB and the trainings rungs without FB (TR) are indicated in each subject. An interpolation of 2nd

order shows the trend of the classification error over the time (black line). More than one run has been 
performed on each day, therefore all data points following the indicated date are performed at this day. 

The runs marked with a black diamond � (one in each subject) are analyzed in detail in Fig. 3 
(classification error) and in Fig. 5 (CAM, task performance). 
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The results of all runs with FB over a period of 
5 months are displayed in Figure 3. Separately indicated are 
the runs with bar-FB, HMD-FB and Cave-FB. An 
interpolation of 2nd order has been performed to show the 
trend of the classification error over the time (thick black 
line). The time-courses of the classification error of the 
individual participants, on the one side, fluctuate 
considerably over runs and, on the other side, display 
different trends in the 3 participants: in participant P1 the 
classification error shows a slightly increasing trend over 
runs, in participant P2 a minimum during the Cave 
experiments and in participant P3 a relative constant level.  

Figure 4:  Mean classification error (in %) of one 
run (marked with a black diamond in Figure 3) 

over the trial time of all 3 participants. At second 3 
the participant heard the cue (single or double 

beep) and started to imagine the specified 
movement during the FB period (between second 

4.25 and 8).  

3.2. Task performance 

Some single run results of the first session with the 
Cave-FB obtained for the 3 participants are exemplary 
displayed in Figure 5 (this runs are indicated in Figure 3 
with a black diamond and are the same runs as displayed in 
Figure 4). Both the theoretically possible CAM is plotted in 
dashed and the real achieved CAM as a full line. Because 
each participant had a different sequence of the 20 foot (F) 
and 20 right hand (R) motor imageries which were 
randomly distributed to avoid adaptation, the theoretical 
pathways are different in all pictures. Nevertheless the 
numbers of trials for both classes are the same and therefore 
the maximum possible CAM is the same. Participant P3 
achieved the best performance with a CAM of 85.4 %. A 
CAM of 100 % corresponds to a correct classification of all 
40 imagery tasks over the entire feedback time. A random 
classification would result in a CAM of 0 %. For 

comparison reasons the CAM performances of the bar-FB 
experiments have been simulated offline.  

In Figure 6 the mean achieved CAM of all participants 
and condition is plotted. The trend of each participant over 
the FB conditions is plotted as grey dashed line. Figure 7 
displays a detailed analysis of the same data. Each box plot 
has lines at the lower quartile, median, and upper quartile 
values. The whiskers are lines extending from each end of 
the box to show the extent of the rest of the performances. 
The trend of each participant over the three FB conditions 
is indicated with a grey dashed line. Two participants’ show 
an increase over the condition, but participant P1 achieved 
worse results with the HMD. 

It is nearly impossible to achieve the maximum gain 
able CAM of 100%, because every small procrastination or 
hesitation of the participant results in reduced mileage. For 
a perfect outcome, a correct classification must happen 
during the whole FB time of all trials. Therefore the results 
are not directly comparable to normal BCI performance 
results. 

Figure 5:  Task performance measures of all 3 
participants (P1, P2 and P3) displayed in the 

theoretical possibility CAM (dashed line) and the 
real CAM (full line).  

3.3. Presence and body representation 

After completing the experiments in the Cave, the 
participants were asked to fill in the Slater-Usoh-Steed 
presence questionnaire [22] and then a non-structured 
interview was conducted. The results of the questionnaire 
and interview data have been evaluated separately [23]. 
After the standard BCI experiments and after the HMD 
experiments no presence questionnaires and interviews 
have been conducted. As a result of that no comparable 
analysis can be done over the three FB conditions and 
therefore this topic can not be discussed further in this 
paper, nevertheless the BCI may be considered as a very 
unusual extension of the body. 
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Figure 6:  Mean CAM values of all participants and 
all 3 FB conditions. The trend of each participant 
over the FB conditions is plotted as grey dashed 

line.

Figure 7:  Distribution of the achieved CAM of all 
participants and all 3 FB conditions. Each plot has 

lines at the lower quartile, median, and upper 
quartile values. The whiskers are lines extending 
from each end of the box to show the extend of 

the rest of the data. 

4. Discussion and conclusion 

These data indicate that EEG recording and single trial 
processing are possible in a HMD or a Cave-like system, 
and that feet motor imagery is an adequate neural strategy 
to control events within the VEs. Imagination of both feet 
movement is a mental task which comes very close to that 
of natural walking. The next important step in this research 
is to change the experimental paradigm to eliminate 
externally-paced cues. In this way the participant could 
decide to start walking at will. Such an asynchronous BCI 
system however, is more demanding and more complex for 
the participant [24]. 

The participants were able to achieve a grand average 
CAM of 49.2%. The result of a random session would be a 
CAM of 0%. Relative good performances are obtained with 
the virtual FB’s (Cave better than HMD), except some 

outliers. One reason for some inferior classification results 
of individual runs especially in the Cave condition in 
Figure 7, e.g. CAM of 9.5 in participant P3) could be the 
loss of concentration in connection with a moving visual 
scene, because observation of moving objects can have an 
impact on neurons in the motor area [25]. Another possible 
explanation for the problems in the performance results of 
participant P1 (top row in Figure 5) could be that between 
trial 14 and 17 and between trial 20 and 25, the same class 
always should have been performed, that is the "standing 
class" (right hand movement) in this example, but the 
participant wasn’t able to remain stationary for such a long 
period. A similar effect can be observed at the end of the 
run plotted in the middle row of Figure 5. Perhaps a faster 
alternation between the two classes would achieve better 
results, but the sequence of cues was randomized 
automatically through each run. The problem of this long 
period of "standing" is that during this time no feedback is 
given to the participant. If the correct movement (right hand 
motor imagery) is imagined, the participant remains 
stationary, but if the wrong movement (foot motor imagery) 
is imagined, then the participant walks backwards. Walking 
backwards is visual feedback, in contrast to remaining 
stationary, so the period of giving no information back to 
the participant is broken. It can also be observed that the 
way which was walked backwards isn’t that steep and long 
as the path forward. 

The task performances (see Figure 6 and 7) and the 
BCI classifications (see Figure 3) achieved the best values 
during the Cave-FB. The argument that only the task 
experience triggered this result can be disproved, because 
the conditions were recorded in another sequence and 
unfortunately the classification error increased in 
participant P1 over the time (see Figure 4), which would be 
contradictory to that argument. Whether a VE or an 
immersive VE as feedback has an impact on the 
performance or can shorten the training time needs further 
investigation.  The number of participants is too small to 
allow statistical analysis, but the results are consistent. All 
subjects reported that the Cave was more comfortable than 
the HMD and both were very much preferred over the BCI 
training on a monitor.  

In principle should it be possible to achieve the same 
performances in both VE conditions, the HMD and Cave. 
The limited field of view (FOV) of the HMD and the 
weight on the head was irritating and bothering. Also the 
optical resolution of the HMD was less than in the Cave. 
Therefore the subjects felt less present with the HMD as in 
the Cave. The Cave was compared to the HMD as a VE-FB 
much more natural and is hence preferable.  

The main reason given for preferring the VR was that it 
provided motivation. The street was treated as a sort of race 
course and every subject wanted to get further as the others 
in the previous sessions. The motivation seems to greatly 
improve BCI performance, but too much excitement might 
have a negative impact, as it makes it harder to concentrate 
on the BCI control. Two subjects had sometimes nearly 
perfect runs till the last 2 or 3 trials of the run. At that time 
they already realized that they could achieved a new 
distance record, but this excitement reduced their 
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concentration and therefore the last trials were performed 
badly, which reduced the task performance insomuch that 
no new record could be achieved. The aspect of motivation 
and the task/goal of the subject during the experiment have 
a great influence on the BCI performance and must be 
taken into consideration in all further BCI experiments. 

VR provides an excellent training and testing ground 
for procedures that may apply later in reality. One 
important application may the use of VE for people with 
disabilities. If it can be shown that within VE people can 
learn to control their movements through space, than this 
justifies the much greater expense of building physical 
devices (e.g. neuro-prosthesis or a robotic arm) that are 
controlled by a BCI. Another application of the combined 
BCI and VR is the use of the VE with the goal to will 
enhance the classification accuracy and shorten the time 
needed for BCI trainings session. Feedback presentation by 
using VR is very powerful and may improve the 
biofeedback therapy as e.g. to reinforce the rehabilitation in 
stroke patients.  

The research reported in this paper is a further step to 
the long-range vision for multi-sensory environments 
exploiting only mental activity. EEG-based BCI systems 
have a bad signal-to-noise ratio and display a drop of 
classification accuracy when more than 2 mental states 
have to be classified [3, 24, 26]. The ultimate idea behind is 
to use direct implants into the brain (for completely 
paralyzed patients) for computer control, as discussed 
recently by Nicolelis [27] and analyzed directly the activity 
of single neurons. In this case the signal-to-noise ration and 
more than 2 mental states can be classified with high 
accuracy.

Maybe the vision of the science fiction authors to use 
the brain as the ultimate interface will become reality 
sometime in the future. 
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