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Abstract
During face-to-face collaboration people frequently 

monitor the other’s facial expressions to determine their 
current state of attention, mood, and comprehension. 
Capturing a frontal view of the face of mobile users in 
multi-user collaborative environments has been a challenge 
for several years. A mobile social presence system is 
proposed that captures two side views of the face 
simultaneously and generates a frontal view in real-time. 
The face is modeled using an active appearance model 
(AAM) and a mapping of the side model to the frontal 
model is constructed from training. Frontal views are then 
generated by applying this mapping to the fitted side model 
during collaboration. Only a few model coefficients are 
transmitted for the synthesized facial frames, providing a 
highly compressed stream. The virtual frontal videos are of 
good subjective quality and the fitted estimate retains a 
high fidelity to the true model, with peak signal to noise 
ratio of about 40DB. 

Keywords--- Mobile face capture, head mounted 
display (HMD), active appearance model (AAM).

1. Introduction 

One key motivation for the creation of mobile 
communication systems and advanced collaborative 
environments is the increase in real-time communication 
between mobile and distributed partners. During face-to-
face collaboration, users frequently monitor the other’s 
facial expressions to determine their current state of 
attention, mood, and comprehension. Although we may 
have face-to-face interactions with workmates or others, 
many of our social interactions include an increasing 
number of purely virtual interactions; we rarely or never 
meet face-to-face. When it comes to communications from 
remote places, the human face is the most important 
communicative part of the human body. It has great 
expressive ability that provides a continuous stream of cues 
that are used to modulate and tailor interpersonal 
communication. Mediated communications now include 
many cases where facial non-verbal information can be 

critical: negotiation, complex training, emergency 
communication, stressful or tense interactions, 
communication of positive affect, and group coordination 
and motivation. The facial expressions of a remote 
collaborator or a mobile user can convey a sense of 
urgency, emotional congruency, lack of understanding or 
confidence in action, or other nonverbal indicators of 
communication success or breakdown. With an increase 
reliance on telecommunication systems for group 
interaction, there is increased research in advanced social 
presence technologies. Current advanced teleconferencing 
and telepresence systems transmit frames of video. These 
frames are nothing but 2D images from a particular point of 
view. In order to get additional views, designers use either a 
panoramic system or interpolate between a set of views. 

New and enhanced forms of remote collaboration 
through sophisticated environments such as those presented 
in [1-4] provide augmented reality features for a higher 
degree of presence of the remote collaborator in the 
communication channel and, potentially, free movement 
and unlimited views of the shared augmented reality 
environment. 

The Teleportal System [5] is an augmented reality 
environment for remote communication and collaboration 
among multiple users. This effort envisions a Teleportal 
room such as in [4] that allows single or multiple users to 
enter a room sized display and use a broadband 
telecommunication link to engage in face-to-face 
interaction with other remote users in a 3D, augmented 
reality environment, hence providing a simultaneous 
interaction with virtual objects, real objects and models 
while supporting object interposition. It also allows for 
unobstructed 3D face-to-face capture and display. This 
unique feature is designed to support interaction between 
fully mobile virtual representations of user’s faces in 3D 
space so that their position relative to other participants and 
objects under discussion is preserved. The goal is to support 
all the non-verbal and position cues of side-by-side 
collaboration including attentional cues (e.g., “where is the 
person looking now”), turn taking and other conversation 
modulation cues, and situated cues regarding emotional and 
comprehension states. Figure 1 shows a representation of 
the kind of interaction that the Teleportal System allows. 

PRESENCE 2005

171



Figure 1 Conceptual drawing of the application 
scenario enabled by the Teleportal System. Two 
distant users are interacting on a task. One user is 
instructing how to proceed from a mobile location, 
while the other is executing the task. Both have 
visual feedback of the other’s environment. 

1.1. Main objectives 

Capturing a clear, detailed frontal view of the face of 
mobile users in multi-user collaborative environments has 
been a challenge for several years. Technologies that 
occlude the user’s field-of-view are not practical and 
potentially dangerous in full mobile outdoor settings. Other 
applications of facial capture systems include 
teleconferencing, wearable computing, and collaborative 
mixed reality environments. The Mobile Face Capture 
System (MFCS) is responsible for obtaining and 
transmitting a quality frontal face video of a remote user 
involved in the communication. The MFCS proposed here 
captures the two side views of the face simultaneously and 
generates the frontal view. This face capture equipment 
consists of two miniature video cameras and convex 
mirrors [5]. Figure 2 shows a conceptual drawing that 
illustrates the face-capture cameras and the mirrors with 
respect to the user’s head. Each of the cameras is pointed 
towards the respective convex mirror, which is angled to 
reflect an image of one side of the face. The convex mirrors 
produce a slight distortion of the side view of the face. The 
left and right video cameras capture the corresponding side 
views of the human face in real-time. The goal of the work 
in this paper is to synthesize a frontal view facial image 
from the two side views recorded by the head mounted 
display (HMD) side cameras. 

1.2. Advantages 

Consider the contrast with conventional capturing 
techniques, where either the face capture system is static 
within the environment, for example a single camera 
mounted on a display, or the capture system is bulky, 
costly, and computationally expensive, for example a room 
instrumented with a sea of cameras [1]. The MFCS system 
is static with respect to the user’s head movements, uses 
only two cameras to produce a wide range of views of a 

user’s head including a possible stereoscopic view, can 
capture the face regardless of location, and works on any 
basic processor. 

Figure 2 Mobile Face Capture System (MFCS) 
concept with two convex mirrors and two lipstick 
cameras. 

Most previous systems have been built using a highly 
instrumented fixed indoor environment, while our work is 
motivated by a need to be mobile. In its current 
implementation it relies on the use of a head mounted 
display (HMD) that includes a projective display and 
mobile face capture system (MFCS). 

The HMD will ultimately allow all participants to: (a) 
view 3D images of the face of remote collaborators, (b) 
view unobstructed the real local participants and objects, 
and (c) view the blending of physical and virtual objects. 
Although the MFCS system can be used with any display, 
combining it with an augmented reality (AR) HMD allows 
the user to see the 2D or 3D faces of collaborators in 
appropriate locations for interpersonal communication 
relative to their body or the environment. 

Our current MFCS prototype consists of two side 
cameras and front mirrors as depicted in Figure 2. The basic 
requirement of the MFCS is that it must produce quality 
video of the wearer’s face without interfering with the 
ability to perform other required tasks such as object 
manipulation and the 3D visualization of a remote 
communicator or of shared data or objects with that 
communicator. However, around one’s office, a participant 
may reach out to data or files to share with others and any 
obstruction of any one participant’s direct view would 
prohibit executing those tasks. We also anticipate the use of 
MFCS with outdoor, fully mobile AR systems or next 
generation mobile phones. In this demanding setting, the 
MFCS approach can minimize visual occlusions so as to 
not interfere with simple walking, driving, object 
manipulation or non-mediated face-to-face interaction. This 
current work forms a stepping-stone for the creation of a 
complete 3D augmented reality based face-to-face 
communication system that can produce stereoscopic views 
of the users via a real-time augmented reality display. 
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1.3. Organization of the paper 

The remainder of this paper is organized as follows. 
Section 2 describes the relevant background for the MFCS. 
Section 3 describes the hardware system design. The 
equipment used and the optics issues are discussed. The 
algorithms and methods used in the MFCS are explained in 
Section 4. Section 5 illustrates some results of using the 
prototype MFCS. Section 6 presents conclusions of the 
work with the MFCS and suggests ideas for future work. 

2. Related background 

To synthesize a frontal view facial image, a model of 
the face is created during the training stage. This model is 
used to characterize the input streams at run time. The 
model is also used to create or instantiate the desired views 
(i.e., the frontal view, but potentially a wide range of 
views). 

Face modeling has been used as a tool to aid in a large 
number of applications such as person identification, face 
surveillance, face animation, expression cloning, etc. As a 
result, there are a number of techniques employed to model 
the face. They can be categorized into 2D and 3D 
techniques. This paper follows a 2D analysis by synthesis 
approach: namely, Active Appearance Models, for its 
robustness and computational efficiency. 

Active Appearance Models (AAMs) [6-8], which first 
appeared in [9], are non-linear, generative, and parametric 
statistical models of a certain deformable object in the 2D 
image plane. In particular, face modeling has been one of 
the most popular applications of AAMs [9]. 

The typical application scenario of AAMs involves a 
training phase, where the model is built, and a fitting phase, 
where a search is made to find the optimal model 
parameters that minimize the distance from the generated 
model instance and the input image. A detailed and 
comprehensive survey on the subject of AAMs and the 
closely related concepts of Active Blobs, Direct 
Appearance Models, and Morphable Models can be found 
in [10]. 

Other approaches to image synthesis have been 
reported [11] that could be used to synthesize images by 
interpolating some reference views of a static scene. In [12, 
13] some extensions were made to be able to handle 
dynamic scene interpolation. These techniques rely on 
estimating the epipolar geometry of the scene and having a 
set of reliable correspondences. Also, care has to be taken 
to properly blend or interpolate between images to obtain a 
visually pleasing result. Typically, AAMs are less sensitive 
and error-prone than such approaches, at the expense of 
having to provide a database of training samples. 

Reddy et. al. [14] proposed a method for synthesizing a 
frontal face image using a similar HMD. The proposed 
approach was to calibrate the system to obtain a set of 
warping functions to map pixels from the side images to 
virtual frontal image coordinates. A structured light grid 
was projected onto the face from the front and the 
deformation in the side images recorded to be used for 
warping during operation. Problems included use of 

structured light in the field, the blending of the two side 
images at their seam in the frontal image, and image 
distortion created by facial expressions not modeled well by 
the static warp. In contrast, the approach of this paper 
produces consistently smooth images and high 
compression. The costs are several minutes of training and 
fitting and the need to store the models at both the sender 
and receiver [15]. 

3. Face capture system design 

3.1. Current hardware performance

The current HMD prototype cameras, Sony DXC-LS1 
with Fujinon YF12B-7 lenses, are tethered by cables to a P4 
1.7 GHz PC with 496 MB RAM. A Panasonic GP-KR202 
video camera is positioned on the desk to take a real frontal 
video during training. The subject puts on the MFCS and 
minor adjustments may be made to the orientation of the 
mirrors. The subject then faces the Panasonic camera and 
speaks and gestures using a standard script. Standard office 
lighting is used. The system records synchronized video 
from the side MFCS and frontal observing cameras. Current 
storage resources limit us to recording 70 frames per 
session. The longest step in the training process is the 
manual identification of face feature points in the side (46 
points) and frontal images (95 points), which may take 15 
minutes. Fitting the AAM models to the side and front 
images and fitting the mapping from the side images to the 
frontal images is done in real-time. Thus, the entire training 
time for a single subject is currently about 15 minutes. 
Future improvements, including more automation in face 
point identification and sharing of data between subjects 
should reduce the training to 2 to 10 minutes. During the 
user task, generation of the virtual frontal video can be done 
in real time. Matthews and Baker [10] have shown that 
similar computations can be performed at over 260 frames 
per second. 

Notice that there exist mobile and wireless counterparts 
for all the equipment in this prototype version, which can 
be replaced with off-the-shelf and dedicated hardware to 
obtain a mobile system. 

3.2. Optical System Layout

The general layout of the system is shown in Figure 2. 
The calculations for estimating the variable parameters are 
simplified by unfolding the overall system. When the 
system is unfolded, the mirror can be represented as a 
negative lens (see Figure 3). The main components of this 
system are the (a) human face, (b) camera, and (c) mirror. 
The various parameters that are involved in the calculations 
are as follows. 
1. Human face: The main parameters of the face that 

affect the geometry of the system are height and width. 
Other factors, such as skin color and illumination, 
affect the performance of the system but have no effect 
on the geometry. The dimensions of an average face 
are:

H - Height of the head to be captured (~ 250mm). 
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W-Width of the head to be captured (~ 175mm). 
2. Camera: The main parameters are the size, the weight, 

the minimum working distance, the field of view, and 
the depth of field. Based on the approximate values of 
these parameters, we have obtained the off-the-shelf 
lipstick camera, Sony DXC-LS1. The two cameras are 
color balanced using their built-in hardware 
capabilities. The 12mm focal length lens has the 
following values: 

Sensing area: 1/4”, or equivalently 3.2mm(y) x 
2.4mm(x). 
Pixel Dimensions: the image sensed has a 
resolution of 768 x 494. 
Focal Length (Fc): The focal length of the lens 
selected is 12 mm (VCL - 12UVM). 
Field of View (FOV): The field of view of the 
camera with the above mentioned lens is 
15.2o x 11.4o.
Diameter (Dc): The diameter of the lens and the 
camera is 12mm. 
f-number (Nc): The f-number for this camera lens 
is 1. Although in practice, we adjust the iris 
according to illumination, we consider an f-
number of 1 in the estimation of the other 
parameters. 
Minimum Working Distance (MWD): The 
minimum working distance for the selected lens is 
200mm. 
Depth of Field (DOF): This parameter is 
dependent critically on the lens f-number which 
will vary with various illuminations. The higher 
the f-number the larger the DOF. This system 
requires however to consider the DOF of the 
camera and mirror combined. If the system has 
large DOF then it will be more portable and can 
accommodate many users without much change in 
the position and focus of the cameras. The DOF 
computation for the camera and mirror combined 
will be treated elsewhere with an in depth 
development of the optical layout and design. 

3. Mirror: This is the most flexible component of the 
system. Hence, all the parameters of this component 
are estimated and the component is custom made. The 
various parameters of the mirror that will affect the 
geometry of the system are: 

Diameter (Dm) / f-number (Nm)
Focal Length (Fm) or Radius of Curvature (Rm)
Magnification Factor (Mm)

4. Distances: Between these three components, we have 
the following distances: 

Dcm - Distance between the camera and the mirror. 
Dmf - Distance between the mirror and the face.

3.2.1. Estimation of the Variable Parameters (Dmf
and Dm). From the theory of pupils and windows, the 
camera is the limiting aperture from the intermediary image 
plane located behind the mirror. Hence, the camera acts as 
the pupil of the system and the mirror is the window. 

Figure 3 Optical system diagram for the 
estimation of the variable parameters Dmf and Dm.

In the unfolded configuration, the mirror is represented 
as a negative lens with image focal length mf  equal in 
magnitude to that of the mirror with an opposite sign. The 
imaging equation for the equivalent lens to the mirror yields 

where x’ is negative because the values Dmf and mf  are 
negative. Hence, the image in the unfolded case is virtual
and thus it is always between the lens and the human face. 
A study was made of estimated values for Dm as a function 
of the f-number and, based on the practical values for the 
size of the mirror (Dm) and the distances (Dmf and Dcm), the 
mirror was customized. A convex mirror of radius of 
curvature 155.04 mm was made corresponding to the f-
number of 2. The convex side of the mirror was coated for 
the visible light spectrum. Figure 4 shows two sample 
images obtained from this optical system specification. 

Figure 4 Sample images acquired from the current 
MFCS prototype with the optical specifications 
above.

4. Virtual view synthesis 

4.1. System design 

We present a generative and parametric method for 
face video synthesis. We build an AAM model from 
training data and use a regularization technique to 
determine the mapping between the AAM parameters for 
the side view model and the parameters for the front view 
model. Figure 5 depicts the training process where the goal 
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is to build the corresponding AAM models and estimate the 
linear operator that describes the forward mapping. 

Figure 5 System diagram. From training, the AAM 
model is learned along with the transformation 
between side view parameters and frontal view 
parameters. At runtime the learned transformation 
is used to estimate frontal view parameters that 
instantiate the frontal view AAM. 

After the forward linear operator is estimated, it can 
then be used to predict the frontal parameters for the 
respective AAM, as shown in Figure 5. 

4.2. AAM modeling 

This section describes the basic formulation of the 
AAM technique that provides the basis of our design. It is 
divided into the AAM model creation, the model 
instantiation, and the fitting process and it follows the 
notation presented in [10]. 

4.2.1. Model definition. AAMs model the shape, 
which accounts for the rigid form as well as the possible 
deformations, and texture (i.e., lighting intensity) of an 
object.

The shape is defined as a closed triangulated mesh, 
which can be represented as a vector containing the 
concatenation of vertex locations: 

where v is the number of vertices of the mesh. 
If there are n training shape vectors, then we can 

assume (provided that enough samples are given) that any 
new shape can be explained as a linear combination of 
those given as training: 

where s0 is the mean shape and the si’s are the variations or 
deformations from the mean. pi’s are the shape parameters. 

The texture or appearance can be defined as the pixel 
intensities relative to the mean shape s0. Let x be the pixel 
locations in s0, then 

is the appearance function. 
4.2.2. Model instantiation. Given a set of parameters, 

p = (p1, p2, · · ·, pn)T for the shape and a set of parameters, 
= ( 1, 2, · · ·, m)T for the appearance, an image can be 
synthesized corresponding to an instantiation of the model. 
The shape and appearance are generated independently by 
applying the parameters to Equations 3 and 4, respectively. 
However, the appearance is defined in terms of the mean 
shape s0, which requires warping to the generated shape 
instance. This process can be represented as:

where W(x;p) is a piecewise affine warp from s0 to s. x
defines the pixel in s0 to be warped and p determines the 
shape s to be warped to.

4.2.3. Model fitting. In the fitting phase the goal is to 
search for the model parameters that minimize the error 
between the current image and the model instance for those 
parameters. This error can be defined as: 

where the first term corresponds to the appearance defined 
by parameters  of the model at pixel x in the base mesh, 
s0, and the second term corresponds to the pixel in the input 
image as determined by the warp W(x;p). Hence, the 
problem has been reduced to an optimization problem with 
cost function E(x) x s0 and parameters  and p to 
search for. It should be noted that in practice, Principal 
Component Analysis (PCA) is applied to the shape and 
texture vectors, which makes the search more manageable. 

4.3. Face modeling 

Currently, the side view models are created with a 
mesh of 46 points and the frontal model with a 95 point 
mesh. In Figure 6 the contours of the base meshes are 
presented with two sample deviations along the first 
principal component direction. Note that this corresponds to 
the opening and closing of the mouth. 

4.4. Frontal parameter estimation 

The process of training and fitting an AAM has been 
briefly described in Section 4.2. After obtaining a 
synchronized stream of M images of the subject from the 
MFCS side cameras and a frontal camera, one can use this 
processing to obtain two row vectors yi and xi containing 
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the frontal and side parameters for the ith image, 
respectively. This can be written as: 

for i = 1, · · ·, M. F, L, R indicate the front, left, and right 
side parameters, respectively. 

Figure 6 AAM side and front shape mesh contours 
and two sample variations along the first principle 
component (mode 1). 

To fit a P-degree polynomial to the data we can write: 

where k
ix  denotes element-by-element exponentiation by k,

yij is the  jth element of the ith sample vector yi, and aoj, aij
are the coefficients that determine the polynomial.

If we let y·j denote the jth column of the matrix Y, 
which has M rows equal to the stack of yi row vectors, then 
we can write in matrix notation: 

or alternatively, 

The least squares (LS) solution to the system in 
Equation 10 minimizes the residual error jj Xay  and 

is given by: 

for j = 1, · · · , B.
Tikhonov regularization can be employed to reduce the 

effects of noise in the data and numerical instability related 
to small singular values of A. In essence, we parameterize 
the solution to the system in Equation 10 obtaining a 
balance between trying to fit the data (i.e., reduce the 
residual error of the solution) and constraining the solution 
to a minimal norm. The regularization parameter µ
determines this balance and the solution becomes: 

It can be shown that for a given µ the solution that 
minimizes Equation 12 is: 

One common method to choose the value of µ is to 
select the value that minimizes the generalized cross-
validation (GCV) defined by: 

where X(µ) = XXT(XXT + µI) 1.

5. Experimental results 

In this section, we first introduce the results of the 
AAM modeling on each view of the face and then follow 
with a discussion of the quantitative results for the 
parameter estimation. 

5.1. AAM Models 

An AAM of the frontal face and the side view images 
was built for each subject as described in Section 4. It was 
built using 8 frames out of a 71 frame video stream per 
view. The subsets were spaced at 10 frames apart and the 
AAM was built to capture 99% of the variation when PCA 
was applied. This reduced the representation of the face to a 
model parameterized by only 6-7 coefficients (i.e., we are 
able to synthesize an image of the face for each of the 71 
frames with at most 7 floating point numbers). Figure 9 
presents samples of the synthesized faces of two subjects as 
well as the original frames. The synthesized images are 
very similar to the original images and they properly 
convey the facial expressions of the subjects. 

5.2. Frontal Parameter Estimates 

A leave-one-out approach was followed to estimate the 
residual differences reported in this section. This is done to 
properly estimate the expected error for unseen images (i.e., 
images that weren’t used to find the solution) and avoid 
overfitting the data. Two basic measures are reported here: 
the residual differences of the parameters of the AAM 
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models, jj Xay , and the peak signal-to-noise-ratio 

(PSNR), which provides a standard measure of similarity 
between the originally synthesized frontal image and the 
one synthesized by estimating the parameters using the 
fitted polynomial. 

The PSNR between two M × N grayscale images, I and
Î, is given by:

where 

In Table 1, it is shown how the residual error for the 
first coefficient tends to zero as the degree of the 
polynomial used is increased, while the estimated error 
using the leave-one-out approach starts increasing after 
polynomial degree 2. This is an indication that for the 
limited amount of data that we are currently using (i.e., 71 
frames) we can not apply a polynomial fit with degree over 
2 and care has to be taken not to be misled by the absolute 
residual difference. 

Table 1 Absolute residual error vs. leave-one-out 
estimate for parameter one. 

In Table 2, a summary of the residual differences for 
the first two parameters and the PSNRs is presented. The 
effect of increasing the polynomial degree without 
providing enough data is clearly observed for the least 
squares (LS) solution where the error mean (µ) and the 
standard deviation ( ) steadily increase. It shows that the 
regularized least squares (RLS) solution does not blindly 
rely on the data and therefore is more robust to noise (e.g., 
outliers) and avoids overfitting the data. 

Figure 7 shows the PSNR average +/- the standard 
deviations for the LS solution and RLS solution as a 
function of the polynomial degree. It can be observed how 
the regularized approach has slightly higher PSNR values 
and partially overcomes the over fitting problem, while the 
LS approach has a faster decreasing average PSNR and 
increasing standard deviation. 

It should be noted that although the differences in 
PSNR are not substantial, they are very significant. They 
should not be disregarded as insignificant, given that as 
more variation is introduced to the AAM model the number 
of coefficients necessary to parameterize the face will 
increase and more ambiguity will be present in the 
mapping, making these gaps larger. Also, notice how in 
Figure 8 the image generated by the LS approach is highly 
distorted, while the one synthesized by RLS is much 
smoother. 

Finally, Figure 9 shows, in the last two rows, the 
originally synthesized frontal image and the one 
synthesized by estimating the parameters using a 
polynomial of degree 2. 

Table 2 Results for one subject (other subjects 
follow similar patterns) of the PSNR and 
Parameter Residuals for the first two parameters 
shown for the LS and RLS solutions. The number 
next to LS and RLS indicates the polynomial 
degree.

Figure 7 PSNR mean and standard deviation plot. 

Figure 8 Outlier Effect on LS. It is shown how LS1 
(left) is more susceptible to outlier effects than 
RLS1 (right). 
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Figure 9 Samples of two side (top) and frontal 
(center) original views and the AAM model 
instantiation for each and the respective 
estimated images (bottom). 

6. Concluding discussion 

We have designed a system to capture a video stream 
of two side views of the face using the MFCS and a 
supplementary view from a third camera used only during 
the training stage. By modeling the three views of the face 
using an AAM and finding the regularized solution to the 
mapping between the two side views and the supplementary 
view, we can estimate the parameters for this missing view 
at run time. 

By solving this problem using a statistical generative 
method, we avoid the difficulties associated with blending 
the two separate images and pose estimation. Our generated 
videos are of good subjective quality and maintain a high 
fidelity, about 40 dB PSNR, between the original model 
and the estimated one. Furthermore, we have a completely 
automatic system at run time. The AAM’s and the linear 
regularization techniques employed have proven to be 
efficient maintaining this application in the real time 
domain. We conclude that our MFCS and mathematical 
methods support the intended collaborative distributed 
applications. 

Implemented in a full mobile system, this approach 
offers the possibility of communicating the full facial 
expression of a mobile user anywhere and anytime when 
higher levels of social presence are needed for example 
emergency, affective, or procedural communication. It is 
important to note that our frontal videos are generated from 
video frames taken during training. While this is sufficient 
for communicating the state of mind of the collaborator, it 
is not a video or telepresence system. The face is 
reconstructed from an analysis of changing parameters. For 
example, it cannot communicate aspects of the current 
environment; for example, the reflection of a fire on a 
firefighter’s face. Future research will investigate methods 
to blend in the environmental lighting, when needed. Future 
directions include generating full 3D models of the remote 
user’s face, creating a fully mobile prototype, adding 
temporal correlation information to the process of 
estimating the synthetic view parameters, and evaluating 
the effect of this additional social presence on user behavior 
during mobile collaboration and communication. 
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