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Summary 

The fields of presence research and electroencephalography (EEG) are 

related in, at least, two ways. Firstly, EEG can be used to analyse the 

neurophysiological phenomena related to presence research. For example, 

EEG might be useful to investigate the question of ‘breaks in presence’. 

Secondly, EEG can be used to control external devices with a so-called 

“brain computer interface” (BCI). Such a BCI might be also used for 

controlling a virtual environment.  

The basic properties of EEG and the state-of-the art of BCI research are 

reviewed. An experiment with EEG-based feedback was performed and the 

amount of transferred information is presented. Some consequences for 

using EEG in presence research are discussed.  



 

1 Introduction 

 

The brain is the integrating, information processing and controlling centre of each 

individual. It integrates the various sensations (visual, tactile, acoustic, etc.), constructs 

an image of the outside world and controls the muscle activities in order to move, speak, 

see, and make (facial) expressions , in order to interact with the environment. The 

similarity of response in behaviour and perceptual activity between being in a real world 

setting, and being in an ‘equivalent’ virtual world setting, is obviously a fundamental 

aspect of these activities. 

 

Some typical measuring tools are  have been listed at a ‘Presence Research’ 

(http://www.presence-research.org/tools.html) web site. These include various questionnaires, 

motion tracking, eye movement, video observation, as well as physiological and 

neurophysiological measurement systems. In recent grant applications also functional 

magnetic resonance imaging (fMRI) was included.  

 

Questionnaires provide subjective (internal) measures, and can be hardly compared 

between individuals. Observations of behaviour and movement as well as physiological 

body measurements are more objective (external) measures; but they usually do not 

describe the brain functions rather than some distant effect. Morever, they are not an 

ideal method for assessing presence, since often they conflict with the demands of the 

application. Hence we would prefer more direct measurements from the brain; fMRI as 

well as electroencephalogram (EEG) provide non-invasive measurements of the activity 

and state of the brain. A recently funded EU-project - Presencia – will look into these 

techniques. In the following, we will discuss some of the details of EEG analysis.  

 

 

2 Properties of EEG recordings 

 

The EEG has the small signal amplitude in the range of microvolts (µV). Figure 1 

shows the spectral density function of an EEG recording and of various noise sources. 



In this case, the signal-to-noise ratio is over a large frequency range (0-35Hz) larger 

than 10, no large noise sources are in the data.  

 

However, environments with large, low-frequency electromagnetic fields can cause a 

significant interference to EEG recordings. The second limitation is the activity of 

muscles in the head region (e.g. chewing, speaking, etc). The electrical activity of these 

muscles have, usually, much large amplitude then the EEG. With some effort in quality 

control and artefact processing (Schlögl, 2000), the disadvantages can be compensated. 

If these factors are considered, the EEG can be assessed in almost any conscious 

(awake) or unconscious (sleep, coma) state. 
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Figure 1: EEG and noise spectrum. Noise spectra of an EEG amplifier is compared with an EEG 

spectrum and the noise levels of 10kOhm and 4.7kOhm. Furthermore, the noise level of the 

quantisation noise is shown; the sampling rate was 128Hz. Both, the EEG and the noise, were 

recorded with a filter setting of 0.5 to 30Hz. Current state-of-the-art EEG-amplifiers do not have more 

than 0.025µV/Hz1/2 at any frequency above 1Hz 

 



Besides spectral parameters of the EEG, also evoked potentials (EPs) can be used. 

Bayliss and Ballard (2000) reported results of evoked potentials recordings in a virtual 

driving environment. The best classification accuracy for two classes was 90%. 

However, the disadvantage of EPs are that they are bound to some stimuli. This means 

only a stimulus response can be classified; it will be very difficult (if not impossible) to 

get a continuous classification system. An alternative approach for a continuous 

analysis of EP’s was presented by Levine et al. (2000). 

 

Alternatively, spectral estimates of the EEG can be obtained continuously (e.g. 

Pfurtscheller et al. 1998, 2001). One method for estimating the time-varying spectral 

density function are adaptive autoregressive (AAR) parameters (Schlögl, 2000). 

Efficient causal estimation algorithms are available, hence, they are very useful for 

online and real-time analysis. Autoregressive parameters describe the EEG spectrum by 

a minimum number of parameters. This is advantageous to classification problems. 

Additionally, the parameters are provided continuously; for this reason, a continuous 

classification of the EEG spectrum is possible.  

 

 

3 Information in EEG recordings  

 

An important aspect of EEG analysis is, how much information can be obtained from 

real EEG recordings. Due to the small signal-to-noise ratio, this is of major interest. The 

question can be rephrased as: “How many different states of the brain can we 

distinguish based on the EEG?” 

 

It is known, that the raw EEG recordings provide an entropy (difference between 

quantisation noise and EEG) between 8 and 11 bits per sample (Schlögl et al. 1999b). 

Taking into account other noise sources (e.g. amplifier noise), the entropy reduced by 

another few bits (see also Figure 1). 

 

More important than the entropy of the raw EEG, is the amount of information that can 

be obtained from these recordings. For this purpose, the ability to discriminate two or 

more “states of the brain” is the important measure. For some years, just error rates or 



accuracy values for a two class problem have been published. Measures based on 

communication theory have been introduced only recently.  
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Figure 2: Separability of two brain states. The two rows show the results of two BCI experiments. At 

t=2 a cue (arrow to left or right) was presented; accordingly the subject should imagine a left or right 

hand movement. Left (N=60) and Right (N=60) cues were presented in random order. The columns 1 

to 3 show the time course of the classification error, the mean and standard deviation of the 

classification output for both classes, and the time course of the mutual information (Schlögl et al. 

2002). AAR(6) parameters of 2 EEG channels were estimated with Kalman filtering (Mode a2v3, 

Schlögl 2000). 

 

In our lab approx 0.3-0.4 bits/second (i.e. 18-24 bits/minute) were obtained (Schlögl et 

al. 2002). More resent results from our lab (Figure 2) indicate, that higher bit rates are 

possible; 60 bits/minute have been already observed. The results also confirm, that 

feedback enhances EEG patterns and supports the identification of distinguished 

patterns. 

 

The second column in Figure 2 displays the variability of EEG patterns during the same 

task. The inter-trial variability, the subject repeats the same activity, is huge compared 



the differences of two different tasks. Hence, the inter-trial variability is an important 

component in single-trial analysis of EEG, and cannot be neglected. 

 

AAR parameters have been estimated from sleep EEG and have been applied 

successfully to BCI experiments (Schlögl, 2000, 2002). A continuous classification 

based on EEG measurements might be also useful in presence research.   

 

 

4 Conclusion 

 

EEG is a direct measurement of the brain activity, it is a non-invasive technique, it has a 

high time-resolution; and it can be used in almost any environment. For these reasons, 

the EEG is an interesting method to investigate the brain activity related to presence 

research. 

The disadvantages of EEG are that the signal to noise ratio is poor; and it is necessary to 

deal with large subject-specific, inter- and intra-trial variability; hence, sophisticated 

data analysis is required. The key question for its usefulness in presence research is, 

thus, how many brain states can be distinguished be EEG measurements.  

In particular, an earlier paper discussed a measurement technique based on assessing 

moments when ‘breaks in presence’ occur (Slater & Steed, 2000) that is, based on the 

moments of transition between being ‘in’ the virtual world and suddenly becoming 

aware of being in the physical world. We speculate that EEG could be used to 

discriminate between these two states, in which case the ‘breaks in presence’ measure 

would be substantially enhanced. 
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